Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gigantic underground storage cavern for oil

21.08.2006
This month sees the start of construction in Singapore of a gigantic underground storage cavern for oil from the the Middle East for all of South-East Asia. SINTEF and Multiconsult AS from Norway will be responsible for management of the whole of the construction phase of the project.

Norwegian competence has long enjoyed a special position in other countries where the construction and use of a wide range of underground facilities are concerned, not least in the planning and studies concerning the bedrock, where Norwegian engineers have been involved in a number of overseas tunnel projects. SINTEF Building Research, for example, has been engaged as a consultant on the building of a more than 20 kilometre-long sewage tunnel under Hong Kong, is involved in the planning of subsea tunnel projects in Iceland and the Faeroes, and is cooperating at the research level with the China Railway Tunnel Design Institute.

Four million cubic metres

Two years ago, SINTEF scientists won their first contract for rock technology pilot studies in Singapore, on which they collaborated with a local company called TriTech. The project involved studies that aimed to identify where the underground storage caverns should be located and how deep they should be. Last year, however, they lost the feasibility study contract to a French company, but now SINTEF is back on the job, together with Multiconsult.

The Singapore government is the state owner of the project. The storage caverns have a total volume of 12 million cubic metres, and the first phase, which is due to start on August 17, will involve the construction of a 1.47 million cubic metre storage cavern.

The three parts of the project, project management, technical consulting and design, will be carried out by a consortium comprising SINTEF, TriTech and Multiconsult. “The project will last for five years, with a budget for the consortium totalling some NOK 37 million”, says chief scientist Ming Lu at SINTEF Building Research.

Work-force in Trondheim

SINTEF will help to draw up tender documentation and participate in following up the operations involved. The scientists will also carry out post hoc approval procedures of the work done.

“It would be too expensive to have an operational body of people in Singapore, but we will keep a project manager here on a permanent basis”, says Ming Lu. “The rest of the project team will remain in Trondheim and Oslo, and work on the project from here. Our estimates suggest that we are talking of a turnover of almost eight million kroner for each of the Norwegian partners over the coming five years. It will also be important to cooperate with other Norwegian companies in this sector” emphasises Lu.

“Recognition of Norwegian competence is almost as important as the size of the contract itself”, says the SINTEF scientist. The contract is the result of deliberately concentrating on a particular type of contact and involvement in a given region. SINTEF will also be marketing itself at a major trade fair in Singapore this autumn.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>