Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT uses math to find oil

16.08.2006
Mathematical procedures developed at MIT may soon help energy companies locate new sources of oil many kilometers underground.

Working closely with teams at Shell International Exploration and Production, the MIT researchers have demonstrated the power of one of their procedures by mapping out an underground oil-trapping geological formation based on limited seismic data.

To keep up with the world's growing demand for oil, energy companies must drill deeper and look harder in increasingly complex geological structures. But locating such structures many kilometers beneath the Earth's surface is difficult, and getting it right is important. Companies can spend as much as $100 million drilling a single well -- a costly mistake if it comes up dry.

To find promising underground sites, companies collect seismic data by using air guns or explosives to send shock waves deep into the ground. How the waves are reflected by underground layers provides information that sophisticated signal-processing techniques can turn into 3-D images of the subsurface. But identifying promising geological structures within those images is difficult.

The Stochastic Systems Group (SSG) at MIT's Laboratory for Information and Decision Systems specializes in designing mathematical procedures, or algorithms, that can quickly analyze complex images. Could some of their algorithms be useful in the oil exploration business? Professor Alan S. Willsky, director of the SSG, and Shell researchers started a project to find out.

Obvious candidates were procedures for defining a continuous surface from a limited set of data points. As a first target, the researchers selected the task of mapping out "top salt," that is, the surface along the tops of contiguous salt domes. Salt domes form deep underground when heavy layers of sediment deposit on salt beds from ancient oceans. The salt extrudes upward like globules in a lava lamp, in the process tilting and blocking off sedimentary layers and creating traps where oil can accumulate.

To generate a map, industrial experts pick points in the onscreen images that they think may be the top salt, and the computer fills in the gaps. By changing their "picks," the experts produce multiple maps for consideration, each one covering several kilometers in length, width and relief. Generating those maps quickly is critical.

The MIT algorithms are well suited to the task. The key is how the different picks relate to one another. "There are statistical relationships between things that happen at different points in space," said Willsky, the Edwin Sibley Webster Professor of Electrical Engineering. "You don't expect properties of the rock at one point to be completely independent of the properties a meter away."

Given a set of picks, the MIT algorithms automatically define statistical relationships from one pick to the next and fill in the missing points based on those relationships. Moreover, they calculate the uncertainty associated with each generated point.

But identifying the top salt is only the beginning. The company also needs to see the shapes of geologic formations to guide their drilling. With a salt dome, for example, the company needs to drill into the adjacent sedimentary layers but not into the salt itself because it will contain no oil.

Again, the MIT researchers have algorithms that can help -- algorithms that they have been using to help medical researchers interpret data from MRIs and CT scans.

Key to the success of this research is constant interaction between the MIT and Shell researchers. "We don't just develop tools and throw them over the transom to Shell," said Willsky. "We're constantly looking over each other's shoulders" to find areas of mutual interest and potential benefit. Teaching each other about their separate areas of expertise is also critical. For Shell, the challenge is to understand MIT's "modern mathematical tools" well enough to build them into the company's existing analytical methods.

This research was funded by Shell International Exploration and Production through MIT's Computer Science and Artificial Intelligence Laboratory.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>