Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT uses math to find oil

16.08.2006
Mathematical procedures developed at MIT may soon help energy companies locate new sources of oil many kilometers underground.

Working closely with teams at Shell International Exploration and Production, the MIT researchers have demonstrated the power of one of their procedures by mapping out an underground oil-trapping geological formation based on limited seismic data.

To keep up with the world's growing demand for oil, energy companies must drill deeper and look harder in increasingly complex geological structures. But locating such structures many kilometers beneath the Earth's surface is difficult, and getting it right is important. Companies can spend as much as $100 million drilling a single well -- a costly mistake if it comes up dry.

To find promising underground sites, companies collect seismic data by using air guns or explosives to send shock waves deep into the ground. How the waves are reflected by underground layers provides information that sophisticated signal-processing techniques can turn into 3-D images of the subsurface. But identifying promising geological structures within those images is difficult.

The Stochastic Systems Group (SSG) at MIT's Laboratory for Information and Decision Systems specializes in designing mathematical procedures, or algorithms, that can quickly analyze complex images. Could some of their algorithms be useful in the oil exploration business? Professor Alan S. Willsky, director of the SSG, and Shell researchers started a project to find out.

Obvious candidates were procedures for defining a continuous surface from a limited set of data points. As a first target, the researchers selected the task of mapping out "top salt," that is, the surface along the tops of contiguous salt domes. Salt domes form deep underground when heavy layers of sediment deposit on salt beds from ancient oceans. The salt extrudes upward like globules in a lava lamp, in the process tilting and blocking off sedimentary layers and creating traps where oil can accumulate.

To generate a map, industrial experts pick points in the onscreen images that they think may be the top salt, and the computer fills in the gaps. By changing their "picks," the experts produce multiple maps for consideration, each one covering several kilometers in length, width and relief. Generating those maps quickly is critical.

The MIT algorithms are well suited to the task. The key is how the different picks relate to one another. "There are statistical relationships between things that happen at different points in space," said Willsky, the Edwin Sibley Webster Professor of Electrical Engineering. "You don't expect properties of the rock at one point to be completely independent of the properties a meter away."

Given a set of picks, the MIT algorithms automatically define statistical relationships from one pick to the next and fill in the missing points based on those relationships. Moreover, they calculate the uncertainty associated with each generated point.

But identifying the top salt is only the beginning. The company also needs to see the shapes of geologic formations to guide their drilling. With a salt dome, for example, the company needs to drill into the adjacent sedimentary layers but not into the salt itself because it will contain no oil.

Again, the MIT researchers have algorithms that can help -- algorithms that they have been using to help medical researchers interpret data from MRIs and CT scans.

Key to the success of this research is constant interaction between the MIT and Shell researchers. "We don't just develop tools and throw them over the transom to Shell," said Willsky. "We're constantly looking over each other's shoulders" to find areas of mutual interest and potential benefit. Teaching each other about their separate areas of expertise is also critical. For Shell, the challenge is to understand MIT's "modern mathematical tools" well enough to build them into the company's existing analytical methods.

This research was funded by Shell International Exploration and Production through MIT's Computer Science and Artificial Intelligence Laboratory.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>