Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon develops new mobile robot that balances, moves on ball instead of wheels or legs

11.08.2006
Carnegie Mellon University researchers have developed a new type of mobile robot that balances on a ball instead of legs or wheels.

"Ballbot" is a self-contained, battery-operated, omnidirectional robot that balances dynamically on a single urethane-coated metal sphere. It weighs 95 pounds and is the approximate height and width of a person. Because of its long, thin shape and ability to maneuver in tight spaces, it has the potential to function better than current robots can in environments with people.

Ballbot's creator, Robotics Research Professor Ralph Hollis, says the robot represents a new paradigm in mobile robotics. What began as a concept in his home workshop has been funded for the last two years with grants from the National Science Foundation.

Hollis is working to prove that dynamically stable robots like Ballbot can outperform their static counterparts. Traditional, statically stable mobile robots have three or more wheels for support, but their bases are generally too wide to move easily among people and furniture. They can also tip over if they move too fast or operate on a slope.

"We wanted to create a robot that can maneuver easily and is tall enough to look you in the eye," Hollis said. "Ballbot is tall and skinny, with a much higher center of gravity than traditional wheeled robots. Because it is omnidirectional, it can move easily in any direction without having to turn first."

Ballbot has an onboard computer that reads balance information from its internal sensors, activating rollers that mobilize the ball on which it moves -- a system that is essentially an inverse mouse-ball drive. When Ballbot is not in operation, it stands in place on three retractable legs.

Hollis noted that current legged robots, such as humanoids, are complex and expensive. He's looking for simple alternatives to better understand the issues of dynamic stability for mobile robots in human environments. He believes that the research may produce a robot that could have useful, meaningful interactions with people who are elderly, disabled or need assistance in an office environment.

Hollis and his team -- including Robotics Institute Project Scientist George Kantor and graduate students Tom Lauwers, Anish Mampetta and Eric Schearer -- have demonstrated Ballbot moving on carpeted surfaces. They presented their research findings in October 2005 at the prestigious International Symposium for Robotics Research in San Francisco, and most recently at the International Conference on Robotics and Automation, which took place in mid-May in Orlando, Fla. Future plans for Ballbot include adding a head and a pair of arms. Swinging the arms, said Hollis, would help to rotate and balance the body.

"We want to make Ballbot much faster, more dynamic and graceful," he said. "But there are many hurdles to overcome, like responding to unplanned contact with its surroundings, planning motion in cluttered spaces and safety issues."

Hollis has been a pioneer in the field of mobile robots since he began building them as a hobby in the 1950s -- well before there were commodity transistors, personal computers or easily accessible off-the-shelf parts. In the 1960s, he developed one of the world's first mobile robots and followed that in the 1970s with the Newt mobile robot, which was one of the first to have an onboard computer. Hollis wrote an article about Newt for the now-defunct Byte Magazine that was voted one of the publication's best stories of all time. Newt subsequently became a subject in the NOVA television documentary "The Mind Machines."

Hollis' hobby ultimately became his career. He earned bachelor's and master's degrees in physics from Kansas State University and a doctorate in the field from the University of Colorado. After a short time at North American Aviation, where he worked on computer simulations of space-flight vehicles, he joined the staff at IBM's Thomas J. Watson Research Center in 1978. He initially focused on magnetism and acoustics, but jumped at the opportunity to enter their fledgling robotics research program. He served as manager of advanced robotics in IBM's Manufacturing Research Department from 1986 to 1993, when he accepted a position as a senior research scientist at Carnegie Mellon's Robotics Institute.

"When I started building robots, the field didn't even exist," said Hollis. "Now the field has grown up around me and I'm in the middle of it. It's like a dream come true."

aw16@andrew.cmu.edu | EurekAlert!
Further information:
http://www.andrew.cmu.edu
http://www.msl.ri.cmu.edu/projects/ballbot/

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>