Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic tongue has good taste

09.01.2002


Coffee producers could use the electronic tongue for quality control.
© PhotoDisc


Hand-held tasting device displays highly discriminating palate.

A new hand-held electronic tongue promises to give accurate and reliable taste measurements for companies currently relying on human tasters for their quality control of wine, tea, coffee, mineral water and other foods.

Human tasters are still irreplaceable for subtile products such as fine wines and whiskies. But their sense of taste saturates after a while, losing its discriminating edge. The device made by Antonio Riul of EMBRAPA Instrumentação Agropecuária in São Carlos, Brazil, and colleagues rivals human taste buds and never tires1.



The electronic tongue can sense low levels of impurities in water. It can discriminate between Cabernet Sauvignons of the same year from two different wineries, and between those from the same winery but different years. It can also spot molecules such as sugar and salt at concentrations too low for human detection.

Questionable taste

Humans have long been thought to detect four basic taste types: sweet, salty, sour and bitter. Very recently, a fifth candidate basic taste was identified: umami, the taste of monosodium glutamate, characteristic of protein-rich foods. Taste buds are believed to contain receptor molecules that trigger nerve signals when they encounter flavour-imparting molecules.

The details of this system are still not understood. Each taste sensation may correspond to a fingerprint signal induced by the differential activation of the various taste receptors. The electronic tongue works on this principle.

It contains four different chemical sensors. The sensors comprise very thin films of three polymers and a small molecule containing ruthenium ions. These materials are deposited onto gold electrodes hooked up to an electrical circuit.

In a solution of flavoursome substances such as sugar, salt quinine (bitter) and hydrochloric acid (sour), the thin sensing films absorb the dissolved substances. This alters the electrical behaviour (the capacitance) of the electrodes in a measurable way.

Each sensor responds differently to different tastes. A composite sensor that incorporates all four therefore produces an electronic fingerprint of the taste. The researchers combine these responses into a single data point on a graph. The position on the graph reflects the type of taste: sweet lies towards the top left, for example, sour towards the top right.

Different beverages have a characteristic location on the graph. Coffee is low down around the middle, for instance. Some tastes that might be expected to differ only slightly, such as distilled and mineral water, lie far apart on the graph and so can be clearly distinguished.

The electronic fingerprint allows the team to predict what a particular solution will taste like, says Martin Taylor of the University of Wales at Bangor, who collaborated with the Brazilian team. "It might fit in the salty or sweet domain, for example," he says. Taylor anticipates that the device will probably be able to discriminate the umami taste too, giving it a refined palate for sushi.

References

  1. Riul, A. et al. Artificial taste sensor: efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir, 18, 239 - 245, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>