Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic tongue has good taste

09.01.2002


Coffee producers could use the electronic tongue for quality control.
© PhotoDisc


Hand-held tasting device displays highly discriminating palate.

A new hand-held electronic tongue promises to give accurate and reliable taste measurements for companies currently relying on human tasters for their quality control of wine, tea, coffee, mineral water and other foods.

Human tasters are still irreplaceable for subtile products such as fine wines and whiskies. But their sense of taste saturates after a while, losing its discriminating edge. The device made by Antonio Riul of EMBRAPA Instrumentação Agropecuária in São Carlos, Brazil, and colleagues rivals human taste buds and never tires1.



The electronic tongue can sense low levels of impurities in water. It can discriminate between Cabernet Sauvignons of the same year from two different wineries, and between those from the same winery but different years. It can also spot molecules such as sugar and salt at concentrations too low for human detection.

Questionable taste

Humans have long been thought to detect four basic taste types: sweet, salty, sour and bitter. Very recently, a fifth candidate basic taste was identified: umami, the taste of monosodium glutamate, characteristic of protein-rich foods. Taste buds are believed to contain receptor molecules that trigger nerve signals when they encounter flavour-imparting molecules.

The details of this system are still not understood. Each taste sensation may correspond to a fingerprint signal induced by the differential activation of the various taste receptors. The electronic tongue works on this principle.

It contains four different chemical sensors. The sensors comprise very thin films of three polymers and a small molecule containing ruthenium ions. These materials are deposited onto gold electrodes hooked up to an electrical circuit.

In a solution of flavoursome substances such as sugar, salt quinine (bitter) and hydrochloric acid (sour), the thin sensing films absorb the dissolved substances. This alters the electrical behaviour (the capacitance) of the electrodes in a measurable way.

Each sensor responds differently to different tastes. A composite sensor that incorporates all four therefore produces an electronic fingerprint of the taste. The researchers combine these responses into a single data point on a graph. The position on the graph reflects the type of taste: sweet lies towards the top left, for example, sour towards the top right.

Different beverages have a characteristic location on the graph. Coffee is low down around the middle, for instance. Some tastes that might be expected to differ only slightly, such as distilled and mineral water, lie far apart on the graph and so can be clearly distinguished.

The electronic fingerprint allows the team to predict what a particular solution will taste like, says Martin Taylor of the University of Wales at Bangor, who collaborated with the Brazilian team. "It might fit in the salty or sweet domain, for example," he says. Taylor anticipates that the device will probably be able to discriminate the umami taste too, giving it a refined palate for sushi.

References

  1. Riul, A. et al. Artificial taste sensor: efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir, 18, 239 - 245, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>