Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic tongue has good taste

09.01.2002


Coffee producers could use the electronic tongue for quality control.
© PhotoDisc


Hand-held tasting device displays highly discriminating palate.

A new hand-held electronic tongue promises to give accurate and reliable taste measurements for companies currently relying on human tasters for their quality control of wine, tea, coffee, mineral water and other foods.

Human tasters are still irreplaceable for subtile products such as fine wines and whiskies. But their sense of taste saturates after a while, losing its discriminating edge. The device made by Antonio Riul of EMBRAPA Instrumentação Agropecuária in São Carlos, Brazil, and colleagues rivals human taste buds and never tires1.



The electronic tongue can sense low levels of impurities in water. It can discriminate between Cabernet Sauvignons of the same year from two different wineries, and between those from the same winery but different years. It can also spot molecules such as sugar and salt at concentrations too low for human detection.

Questionable taste

Humans have long been thought to detect four basic taste types: sweet, salty, sour and bitter. Very recently, a fifth candidate basic taste was identified: umami, the taste of monosodium glutamate, characteristic of protein-rich foods. Taste buds are believed to contain receptor molecules that trigger nerve signals when they encounter flavour-imparting molecules.

The details of this system are still not understood. Each taste sensation may correspond to a fingerprint signal induced by the differential activation of the various taste receptors. The electronic tongue works on this principle.

It contains four different chemical sensors. The sensors comprise very thin films of three polymers and a small molecule containing ruthenium ions. These materials are deposited onto gold electrodes hooked up to an electrical circuit.

In a solution of flavoursome substances such as sugar, salt quinine (bitter) and hydrochloric acid (sour), the thin sensing films absorb the dissolved substances. This alters the electrical behaviour (the capacitance) of the electrodes in a measurable way.

Each sensor responds differently to different tastes. A composite sensor that incorporates all four therefore produces an electronic fingerprint of the taste. The researchers combine these responses into a single data point on a graph. The position on the graph reflects the type of taste: sweet lies towards the top left, for example, sour towards the top right.

Different beverages have a characteristic location on the graph. Coffee is low down around the middle, for instance. Some tastes that might be expected to differ only slightly, such as distilled and mineral water, lie far apart on the graph and so can be clearly distinguished.

The electronic fingerprint allows the team to predict what a particular solution will taste like, says Martin Taylor of the University of Wales at Bangor, who collaborated with the Brazilian team. "It might fit in the salty or sweet domain, for example," he says. Taylor anticipates that the device will probably be able to discriminate the umami taste too, giving it a refined palate for sushi.

References

  1. Riul, A. et al. Artificial taste sensor: efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir, 18, 239 - 245, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>