Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers lay groundwork for 'vertically oriented nanoelectronics'

03.08.2006
Engineers at Purdue University have developed a technique to grow individual carbon nanotubes vertically on top of a silicon wafer, a step toward making advanced electronics, wireless devices and sensors using nanotubes by stacking circuits and components in layers.

The technique might help develop a method for creating "vertically oriented" nanoelectronic devices, the electronic equivalent of a skyscraper, said Timothy S. Fisher, an associate professor of mechanical engineering who is leading the work with Timothy D. Sands, the Basil S. Turner Professor of Engineering.

"Verticality gives you the ability to fit more things into the same area, so you can add more and more layers while keeping the footprint the same size or smaller," Fisher said. "But before we can even think about using nanotubes in electronics, we have to learn how to put them where we want them."

The engineers first created a "thin film" containing two layers of aluminum sandwiching one ultra-thin layer of iron using electron-beam evaporation, a standard process employed in the semiconductor industry. The engineers then used "anodization," a process that causes metals to oxidize — like rusting — to selectively create tiny cylindrical cavities and turn the film into a "porous anodic alumina template" less than 1/100th the width of a human hair in thickness. During the process, an electric field was used to form a precisely aligned array of nanoscopic holes, turning aluminum into porous alumina, the oxidized form of aluminum also known as aluminum oxide.

A mixture of hydrogen and methane gas was then flowed into the template's holes, and microwave energy was applied to break down the methane, which contains carbon. The iron layer acted as a catalyst that prompted the carbon nanotubes to assemble from carbon originating in the methane, and the tubes then grew vertically out of the cavities.

"You get a single nanotube in each pore, and that's important because we can start to think about controlling how and where to put nanotubes to vertically integrate them for future electronic devices and sensing technologies," Sands said.

Findings are detailed in a research paper that appeared July 11 in the journal Nanotechnology. The paper was written by graduate students Matthew R. Maschmann and Aaron D. Franklin; postdoctoral research associate Placidus Amama; Dmitri Zakharov, a staff scientist at Purdue's Birck Nanotechnology Center; Eric Stach, an associate professor of materials engineering; Sands and Fisher.

"The pores in the template and the nanotubes that grow in the pores really self-assemble once you set the process in motion," said Stach, who used two types of electron microscopes to take images of the nanotubes emerging vertically from the cavities. The research is based at the Birck Nanotechnology Center in Purdue's Discovery Park, the university's hub for interdisciplinary research.

The cavities form within seconds, and the nanotubes take several minutes to finish growing. The holes vary in width from 30-50 nanometers. A nanometer, or billionth of a meter, is about as long as 10 atoms strung together.

Carbon nanotubes, which were discovered in the early 1990s, might enable industry to create new types of transistors and more powerful, energy-efficient computers, as well as ultra-thin "nanowires" for electronic circuits. Reaching that potential promise, however, won't be possible unless carbon nanotubes can be integrated with other parts of circuitry and devices, Sands said.

The experiments at Purdue yielded both single- and double-walled nanotubes, meaning they are made of either one or two single sheets of carbon atoms, yielding tubes about one nanometer in diameter.

Researchers will continue the work in efforts to understand which conditions are needed to produce single-wall tubes versus the double-wall variety and to learn how to produce more of one or the other.

Other researchers previously have made the templates, but the Purdue researchers are the first to add a layer of iron, which was Maschmann's idea, Fisher said.

"He was told by many people, including me, that it probably wouldn't work," Fisher said. "We were surprised to see that the nanotubes grow from the sidewall of the hole and then extend vertically."

Early applications are most likely in wireless computer networks and radar technology. Long-term uses are possible in new types of transistors, other electronic devices and circuits.

The research is funded by NASA, through the Purdue-based Institute for Nanoelectronics and Computing.

Timothy Fisher | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>