Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater robots work together without human input

03.08.2006
May be first robot team to self-choreograph movements

This August in Monterey Bay, Calif., an entire fleet of undersea robots will for the first time work together without the aid of humans to make detailed and efficient observations of the ocean.

The oceanographic test bed in Monterey is expected to yield rich information in particular about a periodic upwelling of cold water that occurs at this time of year near Point Año Nuevo, northwest of Monterey Bay.

But the project has potentially larger implications. It may lead to the development of robot fleets that forecast ocean conditions and better protect endangered marine animals, track oil spills, and guide military operations at sea. Moreover, the mathematical system that allows the undersea robots to self-choreograph their movements in response to their environment might one day power other robotic teams that -- without human supervision -- could explore not just oceans, but deserts, rain forests and even other planets.

In addition, the ability to coordinate autonomous vehicles -- a challenge inspired by the grace of bird flocks and fish schools -- may give biologists greater insight into the highly efficient behaviors of animals.

The August field experiment is the centerpiece of a three-year program known as Adaptive Sampling and Prediction (ASAP), which is funded by the Office of Naval Research. The two co-leaders of ASAP are Naomi Ehrich Leonard of Princeton University and Steven Ramp of the Naval Postgraduate School.

The multidisciplinary team of ASAP investigators – who come together from more than a dozen prestigious research institutions -- consists of physical oceanographers, marine biologists and researchers in control and dynamics.

During the experiment, the ASAP system will determine what paths the underwater robots should follow to take the most information-rich samples, or measurements, of ocean activity. As the ocean changes, automated computer programs will update the sampling strategy under the supervision of the ASAP team. Most of the scientists will not be on site during the actual field experiment. The team will collaborate while the experiment is ongoing through a virtual control room, something like a chat room for the ASAP scientists. The researchers will gather online in the virtual control room to share observations and make important decisions about necessary changes to the field operation as it is under way.

The underwater robots, known as gliders, will take the ocean's temperature, measure its salinity (salt content), estimate the currents and track the upwelling. Two types of gliders will be deployed -- Spray gliders and Slocum gliders. The Slocum gliders belong to David Fratantoni of the Woods Hole Oceanographic Institution; the Spray gliders to Russ Davis of the Scripps Institution of Oceanography.

The numerical ocean modeling will be performed independently by Pierre Lermusiaux of Harvard, Yi Chao of NASA's Jet Propulsion Laboratory, Igor Shulman of the U.S. Naval Research Laboratory, and Sharan Majumdar of the University of Miami. Using powerful supercomputers, the oceanographic modelers collect and evaluate all of the ocean measurements to predict future ocean conditions.

In contrast to typical ocean-observing systems, which are static, the mobility of the gliders allows them to capture the dynamic nature of the ocean, which is always shifting in time and space. Furthermore, the gliders will be coordinated onto patterns to ensure that as they move, the measurements they take are as information-rich as possible.

Inspired by the behavior of schools of fish, Naomi Ehrich Leonard's group at Princeton has created algorithms that allow the gliders to self-choreograph their movements in a series of rectangular patterns. The patterns span a large volume that the scientists have mapped in Monterey Bay (imagine a giant aquarium with porous walls that is 20 kilometers wide, 40 kilometers long, and roughly 400 meters deep).

On a day-to-day basis the control algorithms allow the gliders to make decisions independently about how to alter their course -- without any input from humans. This day-to-day autonomy enables the gliders to move according to the organized patterns, even as they are buffeted by strong currents.

As the ocean changes and new features are detected in the measurements and the forecasts, the ASAP team will reorganize the patterns to help guide the gliders toward ocean features of interest such as eddies and thermal fronts. This process, called "adaptive sampling," is expected to dramatically improve our knowledge of the ocean and our ability to predict its chaotic behavior.

In addition to gliders, the ASAP ocean-observing network also includes research ships, surveillance aircraft, propeller-driven vehicles, fixed buoy sensors and coastal radar mapping. The ASAP field operation is one of four marine research initiatives taking place during the summer in Monterey Bay. Collectively known as MB 2006, these four programs are hosted by the Monterey Bay Aquarium Research Institute (MBARI) in Moss Landing, Calif. MBARI will host a media day Aug. 23 featuring scientists showcasing the results of these projects.

Teresa Riordan | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>