Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia-developed device determines how well wind turbines operate

28.07.2006
ATLAS II provides continuous real-time wind turbine performance data

In West Texas, New Mexico, and other places around the world, wind turbines are used to generate electricity. But how can engineers determine their efficiency and health?

Sandia's Wind Energy Technology Department has developed a device, the Accurate Time Linked data Acquisition System (ATLAS II), which answers that question and can provide all of the information necessary to understand how well a machine is performing.

Housed in an environmentally protected aluminum box, ATLAS II is capable of sampling a large number of signals at once to characterize the inflow, the operational state, and the structural response of a wind turbine.

The ATLAS II has several key attributes that make it particularly attractive for wind turbine deployment. It is small, highly reliable, can operate continuously, uses off-the-shelf components, and has lightning protection on all channels.

"The system provides us with sufficient data to help us understand how our turbine blade designs perform in real-world conditions, allowing us to improve on the original design and our design codes," says Jose Zayas, the project lead, who has been working on ATLAS II since its inception in 1999.

Last year the ATLAS II team completed a project with GE Energy and the National Renewable Energy Laboratory (NREL) to monitor the performance of a GE wind turbine in a Great Plains site about 30 miles south of Lamar, Colo., and will soon start monitoring a new work-for-others (WFO) project with Texas Tech University.

The GE Energy/NREL/Sandia collaboration involved testing a 1.5-megawatt, 80-meter-tall turbine with a rotor diameter of 70.6 meters. GE Energy is the largest wind turbine manufacturer in the US and sells them to developers -- such as Florida Power & Light -- all over the world. Wind plant operators sell the electricity to utilities such as the Public Service Company of New Mexico.

The GE turbine was equipped with four ATLAS II units, collecting a total of 67 measurements, including 12 to characterize the inflow, eight to characterize the operational state of the turbine, and 24 to characterize the structural response.

The system collected data continuously, 24 hours a day, seven days a week. The four units were placed at various locations on the turbine, and a GPS time stamp was used to maintain synchronization between the units. All data streams from the different units were merged into a single data stream at the base of the turbine where the ATLAS II software compressed the data and stored them onto a local computer.

Data collection efforts began Sept. 14, 2004, and ended Jan. 19, 2005. During that time, more than 17,000 data records were collected, for a total of 285 Gb of data.

Because the turbine was located at a remote site, the data was transmitted to NREL via a satellite link and later transmitted to Sandia. In places where there is access to the Internet, the data can be monitored in real time.

The Texas Tech project will start in August with an environmental monitoring box being placed on a 200-meter meteorological tower at a test site near the campus in Lubbock. The university is expected to eventually erect a utility-size wind turbine. The ATLAS II will be used to collect data from the machine.

Sandia also is planning three experiments, using the ATLAS II to monitor the performance of three advanced blade designs on a test turbine it operates in conjunction with the US Department of Agriculture's research station in Bushland, Tex.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Chris Burroughs | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

nachricht Plug & Play Light Solution for NOx measurement
01.12.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>