Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify energy gains and environmental impacts of corn ethanol and soybean biodiesel

12.07.2006
The first comprehensive analysis of the full life cycles of soybean biodiesel and corn grain ethanol shows that biodiesel has much less of an impact on the environment and a much higher net energy benefit than corn ethanol, but that neither can do much to meet U.S. energy demand.

The study will be published in the July 11 Proceedings of the National Academy of Sciences.

The researchers tracked all the energy used for growing corn and soybeans and converting the crops into biofuels. They also looked at how much fertilizer and pesticide corn and soybeans required and how much greenhouse gases and nitrogen, phosphorus, and pesticide pollutants each released into the environment.

"Quantifying the benefits and costs of biofuels throughout their life cycles allows us not only to make sound choices today but also to identify better biofuels for the future," said Jason Hill, a postdoctoral researcher in the department of ecology, evolution, and behavior and the department of applied economics and lead author of the study.

The study showed that both corn grain ethanol and soybean biodiesel produce more energy than is needed to grow the crops and convert them into biofuels. This finding refutes other studies claiming that these biofuels require more energy to produce than they provide. The amount of energy each returns differs greatly, however. Soybean biodiesel returns 93 percent more energy than is used to produce it, while corn grain ethanol currently provides only 25 percent more energy.

Still, the researchers caution that neither biofuel can come close to meeting the growing demand for alternatives to petroleum. Dedicating all current U.S. corn and soybean production to biofuels would meet only 12 percent of gasoline demand and 6 percent of diesel demand. Meanwhile, global population growth and increasingly affluent societies will increase demand for corn and soybeans for food.

The authors showed that the environmental impacts of the two biofuels also differ. Soybean biodiesel produces 41 percent less greenhouse gas emissions than diesel fuel whereas corn grain ethanol produces 12 percent less greenhouse gas emissions than gasoline. Soybeans have another environmental advantage over corn because they require much less nitrogen fertilizer and pesticides, which get into groundwater, streams, rivers and oceans. These agricultural chemicals pollute drinking water, and nitrogen decreases biodiversity in global ecosystems. Nitrogen fertilizer, mainly from corn, causes the 'dead zone' in the Gulf of Mexico.

"We did this study to learn from ethanol and biodiesel," says David Tilman, Regents Professor of Ecology and a co-author of the study. "Producing biofuel for transportation is a fledgling industry. Corn ethanol and soybean biodiesel are successful first generation biofuels. The next step is a biofuel crop that requires low chemical and energy inputs and can give us much greater energy and environmental returns. Prairie grasses have great potential."

Biofuels such as switchgrass, mixed prairie grasses and woody plants produced on marginally productive agricultural land or biofuels produced from agricultural or forestry waste have the potential to provide much larger biofuel supplies with greater environmental benefits than corn ethanol and soybean biodiesel.

According to Douglas Tiffany, research fellow, department of applied economics and another co-author of the study, ethanol and biodiesel plants are early biorefineries that in the future will be capable of using different kinds of biomass and conversion technologies to produce a variety of biofuels and other products, depending upon market demands.

Hill adds that both ethanol and biodiesel have a long-term value as additives because they oxygenate fossil fuels, which allows them to burn cleaner. Biodiesel also protects engine parts when blended with diesel.

"There is plenty of demand for ethanol as an additive," Hill says. "The ethanol industry was built on using ethanol as an additive rather than a fuel. Using it as a biofuel such as E85 is a recent and currently unsustainable development. As is, there is barely enough corn grown to meet demand for ethanol as a 10 percent additive."

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>