Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE publishes research roadmap for developing cleaner fuels

11.07.2006
Research aimed at making cellulosic ethanol a practical alternative to gasoline

The U.S. Department of Energy (DOE) today released an ambitious new research agenda for the development of cellulosic ethanol as an alternative to gasoline. The 200-page scientific "roadmap" cites recent advances in biotechnology that have made cost-effective production of ethanol from cellulose, or inedible plant fiber, an attainable goal. The report outlines a detailed research plan for developing new technologies to transform cellulosic ethanol--a renewable, cleaner-burning, and carbon-neutral alternative to gasoline--into an economically viable transportation fuel.

"Cellulosic ethanol has the potential to be a major source for transportation fuel for America's energy future," Under Secretary for Science Raymond L. Orbach said. "Low production cost and high efficiency require transformational changes in processing cellulose to ethanol. DOE's Genomics: GTL program is poised to help do just that."

The roadmap responds directly to the goal recently announced by Secretary of Energy Samuel W. Bodman of displacing 30 percent of 2004 transportation fuel consumption with biofuels by 2030. This goal was set in response to the President's Advanced Energy Initiative.

The roadmap identifies the research required for overcoming challenges to the large-scale production of cellulosic ethanol to help meet this goal, including maximizing biomass feedstock productivity, developing better processes by which to break down cellulosic materials into sugars, and optimizing the fermentation process to convert sugars to ethanol. Cellulosic ethanol is derived from the fibrous, woody and generally inedible portions of plant matter (biomass).

The focus of the research plan is to use advances in biotechnology -- first developed in the Human Genome Project and continued in the Genomics: GTL program in the Department's Office of Science -- to jump-start a new fuel industry whose products can be transported, stored and distributed with only modest modifications to the existing infrastructure and can fuel many of today's vehicles.

The new roadmap was developed during a December 2005 workshop hosted jointly by the Office of Biological and Environmental Research in the Office of Science and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The success of the plan relies heavily on the continuation of the partnership between the two offices established at that workshop.

"Biofuels represent a tremendous opportunity to move our nation toward a reduced dependence on imported oil," DOE Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner said. "We fully intend to use all of our resources and talent to support the President's goal of breaking our addiction to oil, while also enhancing our energy security."

Jeff Sherwood | EurekAlert!
Further information:
http://www.science.doe.gov/
http://www.doegenomestolife.org/biofuels/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>