Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Health-check for deep-sea pipelines

11.07.2006
At present, the petroleum industry knows little about the condition of the continental shelves’ transport arteries – the pipelines that carry oil and gas across the seabed. But now a handful of research institutes and industrial companies from Norway are about to do develop a monitoring system that will act as an environmental watchdog.

Four mid-Norwegian industrial companies – SICOM, Force Technology, CorrOcean and Thermotite – have decided on making a joint effort. SINTEF is part of their team, which has persuaded the oil and gas companies and the Research Council of Norway to back a NOK 41 million project.

The three-year interdisciplinary project is the first phase of a major programme that aims to realise a concept that the project partners have called “SmartPipe”. This will be a complete monitoring system that gathers and processes data from pipelines on the seabed.

Safety and transport capacity

SmartPipe will bring data up from the depths – data that could tell us something about the risk of pipeline leaks (mechanical loads, rate of corrosion, remaining wall thickness, etc.) The system will also send up information about flow conditions in the pipelines, so that it will act both as an environmental watchdog and as a tool capable of ensuring that the transport capacity of the pipelines is maintained at the highest possible level.

Important in the Arctic

“SmartPipe will be an important aid when oil and gas are being produced in sensitive environments like the Arctic. The system will also tell us whether a pipeline’s life-cycle can be extended, and if so, what will be needed to do so. This is important when we remember that the useful lives of many oil and gas fields are being increased, so that they also need transportation systems with a longer lifetime,” says SINTEF project manager Ole Øystein Knudsen.

Petroleum pipelines

The SmartPipe project deals with both pure gas pipelines and the pipelines for oil and gas transport that form part of every offshore subsea installation. More and more fields are being developed without platforms or production vessels. Oil and gas from such fields are carried together in the same pipeline on the seabed, either ashore or to platforms that have spare capacity.

Specialists from mid-Norway

Four mid-Norwegian companies are helping to implement the SmartPipe concept together with SINTEF.

The quartet is headed by the Trondheim company SICOM, which is based on underwater communication systems. The rest of the group consists of Danish-owned Force Technology, also from Trondheim and specialists in corrosion monitoring, the Trondheim company CorrOcean, which develops corrosion sensors, and Canadian-owned Thermotite of Orkanger, which specialises in thermal insulation of subsea pipelines.

Started in 2004

SINTEF members include SINTEF Materials and Chemistry, SINTEF ICT and MARINTEK. SINTEF took the initiative to launch the project and will carry out large parts of it. The research institution has been working on the SmartPipe concept since 2004.

International interest

Four oil and gas companies are financing the project together with the Research Council: ConocoPhillips, BP, Norske Shell and the Norwegian company Gassco, which is responsible for pipeline-based exports of Norwegian gas.

“Our aim is to develop a system that the participants in the project will be able to commercialise. The level of interest on the part of the oil companies makes it quite clear that we are talking about a future product with a global market,” says SICOM’s Vice President Lars Egil Mathisen.

Data from the whole length of the pipeline

At present, the petroleum industry has limited access to data about the state of health of its pipelines or about the flow conditions inside them. Current data capture is restricted to information from sensors located close to the wells, information from ROVs and data from intelligent “pigs” that are sent through the pipelines from time to time.

The sensors in SmartPipe will cover the whole length of the pipeline, and the information will be gathered throughout its working life. Some of the data will be used directly, while other aspects will be used as input for simulations and mathematical models.

Demanding job

“We are facing a demanding job. There are major challenges involved in bring power to the sensors and making the sensors and electronics sufficiently robust to withstand the pipe-laying process and the challenging seabed environment, not to mention bringing the data back to the control centres,” says Lars Mathisen.

The complete system will consist of a sensor package and communication equipment which will be integrated into the pipeline as a distributed system, as well as analytical tools that will transfer the data that have been read in. There will also be a database to store the information and software for presenting the results to the operator.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>