Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Health-check for deep-sea pipelines

11.07.2006
At present, the petroleum industry knows little about the condition of the continental shelves’ transport arteries – the pipelines that carry oil and gas across the seabed. But now a handful of research institutes and industrial companies from Norway are about to do develop a monitoring system that will act as an environmental watchdog.

Four mid-Norwegian industrial companies – SICOM, Force Technology, CorrOcean and Thermotite – have decided on making a joint effort. SINTEF is part of their team, which has persuaded the oil and gas companies and the Research Council of Norway to back a NOK 41 million project.

The three-year interdisciplinary project is the first phase of a major programme that aims to realise a concept that the project partners have called “SmartPipe”. This will be a complete monitoring system that gathers and processes data from pipelines on the seabed.

Safety and transport capacity

SmartPipe will bring data up from the depths – data that could tell us something about the risk of pipeline leaks (mechanical loads, rate of corrosion, remaining wall thickness, etc.) The system will also send up information about flow conditions in the pipelines, so that it will act both as an environmental watchdog and as a tool capable of ensuring that the transport capacity of the pipelines is maintained at the highest possible level.

Important in the Arctic

“SmartPipe will be an important aid when oil and gas are being produced in sensitive environments like the Arctic. The system will also tell us whether a pipeline’s life-cycle can be extended, and if so, what will be needed to do so. This is important when we remember that the useful lives of many oil and gas fields are being increased, so that they also need transportation systems with a longer lifetime,” says SINTEF project manager Ole Øystein Knudsen.

Petroleum pipelines

The SmartPipe project deals with both pure gas pipelines and the pipelines for oil and gas transport that form part of every offshore subsea installation. More and more fields are being developed without platforms or production vessels. Oil and gas from such fields are carried together in the same pipeline on the seabed, either ashore or to platforms that have spare capacity.

Specialists from mid-Norway

Four mid-Norwegian companies are helping to implement the SmartPipe concept together with SINTEF.

The quartet is headed by the Trondheim company SICOM, which is based on underwater communication systems. The rest of the group consists of Danish-owned Force Technology, also from Trondheim and specialists in corrosion monitoring, the Trondheim company CorrOcean, which develops corrosion sensors, and Canadian-owned Thermotite of Orkanger, which specialises in thermal insulation of subsea pipelines.

Started in 2004

SINTEF members include SINTEF Materials and Chemistry, SINTEF ICT and MARINTEK. SINTEF took the initiative to launch the project and will carry out large parts of it. The research institution has been working on the SmartPipe concept since 2004.

International interest

Four oil and gas companies are financing the project together with the Research Council: ConocoPhillips, BP, Norske Shell and the Norwegian company Gassco, which is responsible for pipeline-based exports of Norwegian gas.

“Our aim is to develop a system that the participants in the project will be able to commercialise. The level of interest on the part of the oil companies makes it quite clear that we are talking about a future product with a global market,” says SICOM’s Vice President Lars Egil Mathisen.

Data from the whole length of the pipeline

At present, the petroleum industry has limited access to data about the state of health of its pipelines or about the flow conditions inside them. Current data capture is restricted to information from sensors located close to the wells, information from ROVs and data from intelligent “pigs” that are sent through the pipelines from time to time.

The sensors in SmartPipe will cover the whole length of the pipeline, and the information will be gathered throughout its working life. Some of the data will be used directly, while other aspects will be used as input for simulations and mathematical models.

Demanding job

“We are facing a demanding job. There are major challenges involved in bring power to the sensors and making the sensors and electronics sufficiently robust to withstand the pipe-laying process and the challenging seabed environment, not to mention bringing the data back to the control centres,” says Lars Mathisen.

The complete system will consist of a sensor package and communication equipment which will be integrated into the pipeline as a distributed system, as well as analytical tools that will transfer the data that have been read in. There will also be a database to store the information and software for presenting the results to the operator.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>