Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process makes diesel fuel and industrial chemicals from simple sugar

30.06.2006
The soaring prices of oil and natural gas have sparked a race to make transportation fuels from plant matter instead of petroleum. Both biodiesel and gasoline containing ethanol are starting to make an impact on the market.

But the oil price hike has also fueled a race to find new sources for chemical intermediates - compounds that are the raw material for many modern plastics, drugs and fuels. Behind the scenes, American industry uses millions of tons of chemical intermediates, which are largely sourced from petroleum or natural gas.

James Dumesic, a University of Wisconsin-Madison chemical and biological engineering professor, reports in the June 30 issue of the journal Science on a better way to make a chemical intermediate called HMF (hydroxymethylfurfural) from fructose - fruit sugar. HMF can be converted into plastics, diesel-fuel additive, or even diesel fuel itself, but is seldom used because it is costly to make.

The new process goes beyond making fuel from plants to make industrial chemicals from plants. "Trying to understand how to use catalytic processes to make chemicals and fuel from biomass is a growing area," says Dumesic, who directed the HMF research. "Instead of using the ancient solar energy locked up in fossil fuels, we are trying to take advantage of the carbon dioxide and modern solar energy that crop plants pick up."

The new, patent-pending method for making HMF is a balancing act of chemistry, pressure, temperature and reactor design. After a catalyst converts fructose into HMF, the HMF moves to a solvent that carries it to a separate location, where the HMF is extracted. Although other researchers had previously converted fructose into HMF, Dumesic's research group made a series of improvements that raised the HMF output, and also made the HMF easier to extract.

Once made, HMF is fairly easy to convert into plastics or diesel fuel. Although the biodiesel that has made headlines lately is made from a fat (even used cooking oil), not a sugar, both processes have similar environmental and economic benefits, Dumesic says. Instead of buying petroleum from abroad, the raw material would come from domestic agriculture. Expanding the source of raw material should also depress the price of petroleum.

Using biomass-waste products of agriculture and forestry-can also cut global warming caused by carbon dioxide emissions from fossil fuels, says graduate student Yuriy Roman-Leshkov, first author on the Science paper. "The nice thing about using biomass as a replacement for all these petroleum products is that it is greenhouse-neutral," he says. While burning and otherwise using fossil fuels moves an enormous amount of carbon from the Earth into the atmosphere, the carbon released when a biofuel burns is eventually taken up by growing plants. "This process is really important," Roman-Leshkov says, "because it does not introduce additional carbon dioxide into the atmosphere."

Juben N. Chheda, a second graduate student working on the HMF project, sees the work as part of an explosion of interest in finding alternative sources for petroleum-based chemicals. "We need to develop new process technologies, and HMF is a building block that can replace products like PET, a plastic used for soda bottles," he notes. "This is a first step for a range of chemical products that can be obtained from biomass resources, replacing those that come from petroleum sources."

Dumesic is also exploring methods to convert other sugars and even more complex carbohydrates into HMF and other chemical intermediates. "Solar energy and biology created the stored hydrocarbons in the fossil fuels we have used for so long. Our interest in biomass is driven by the belief that if we learn to use solar energy and biology in a different way, we can address problems related to price, supply, and the environmental impact of industrial activity."

James A. Dumesic | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>