Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light generated by sawdust

30.06.2006
Efficient, compact and low-cost power installation was developed by Russian researchers. The power installation generates a lot of energy from bad-quality coal, sawdust and other low-grade fuel, and it emits very little noxious gas.

The installation exists in a single copy for the time being. Students who are doing practical work for the “non-traditional power engineering” speciality are learning to work on this installation in the N.E. Bauman Moscow State Engineering University. Thus, they would find out that heat and light in big quantity may be obtained practically from waste. To this end, it is not necessary to forward to furnace birchwood and high-quality minerals – the most valuable raw stuff for chemical industry. It turns out possible to obtain power from all kinds of “garbage”, thus getting rid of it without any damage to the environment. Besides, it is relatively low-cost, which is of no small importance.

The mobile, stand-alone power installation was developed by their teachers – Yuri Maslov, Ph.D. (Engineering Sciences), assistant professor, and his colleagues from the N.E. Bauman Moscow State Engineering University, famous for magnificent engineering traditions. The power installation is intended to supply heat and light for small-size enterprises, farms and other small entities. It does not claim that it would provide a town or even a region with power. But in cases when relatively little power is needed, but there is no power transmission line network, proper roads and/or big money yet, the power installation is capable of solving the problem in any season.

The installation consists of two active units: the gas generator and the internal-combustion engine, similar to the diesel engine and in fact developed on the basis of the standard engine but with some modifications. The most important thing is the gas generator per se, that is the device that allows to convert fuel of little use into useful, or more correctly - power-generating gas with the least possible losses both for itself and the environment.

So, thermochemical processing of fuel occurs first. In essence, fuel gasification (that is solid fuel conversion into the gases capable to oxidize with energy liberation) has been known in principle for nearly one hundred years. The distinction is in figures – those of efficiency of the process, that is the ratio of costs and the quantity of obtained power, and environmental safety.

In the gas generator of the “Bauman” installation, sawdust and other waste products (woody, vegetable and even stock-raising, peat and brown coal) are initially dried a little, and then heated at certain temperature in air current. This takes place in several stages in different parts of the generator – in the drying, restoration and combustion zones. Everything is important in the process - temperature conditions and the quantity of materials of which the generator is made, and quantity of oxidant, i.e., atmospheric oxygen. All these parameters were thoroughly determined by the authors based on a large amount of experimental investigations, and engineering and physicochemical calculations.

As a result, power-generating gas coming out of such installation’s gas generator consists nearly by half from a mixture of burning gases, i.e. carbon monoxide, hydrogen, methane and oxygen, and also of carbon dioxide and nitrogen dioxide, which do not burn or damage the environment either. The installation erected in the laboratory of the engineering university, is able to generate 10 kilowatt of electric power. This is not much, but the installation is small – this is rather a pilot variant. In principle, they are designed for generation of 30 kilowatt of electric power, i.e., it is quite possible to provide for example one farm with electric power. Along with that, the farm would get rid of vegetable waste and would reduce expenses on purchase and delivery of the “standard” fuel. Of course, some farmers do not care that much about the contents of any power installation discharge or about they toxicity, as environmental safely of the installation still is not a decisive argument for farmers. Instead, they would appreciate economy and effectiveness. Ecological safety is an inalienable part of the installation.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>