Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light generated by sawdust

30.06.2006
Efficient, compact and low-cost power installation was developed by Russian researchers. The power installation generates a lot of energy from bad-quality coal, sawdust and other low-grade fuel, and it emits very little noxious gas.

The installation exists in a single copy for the time being. Students who are doing practical work for the “non-traditional power engineering” speciality are learning to work on this installation in the N.E. Bauman Moscow State Engineering University. Thus, they would find out that heat and light in big quantity may be obtained practically from waste. To this end, it is not necessary to forward to furnace birchwood and high-quality minerals – the most valuable raw stuff for chemical industry. It turns out possible to obtain power from all kinds of “garbage”, thus getting rid of it without any damage to the environment. Besides, it is relatively low-cost, which is of no small importance.

The mobile, stand-alone power installation was developed by their teachers – Yuri Maslov, Ph.D. (Engineering Sciences), assistant professor, and his colleagues from the N.E. Bauman Moscow State Engineering University, famous for magnificent engineering traditions. The power installation is intended to supply heat and light for small-size enterprises, farms and other small entities. It does not claim that it would provide a town or even a region with power. But in cases when relatively little power is needed, but there is no power transmission line network, proper roads and/or big money yet, the power installation is capable of solving the problem in any season.

The installation consists of two active units: the gas generator and the internal-combustion engine, similar to the diesel engine and in fact developed on the basis of the standard engine but with some modifications. The most important thing is the gas generator per se, that is the device that allows to convert fuel of little use into useful, or more correctly - power-generating gas with the least possible losses both for itself and the environment.

So, thermochemical processing of fuel occurs first. In essence, fuel gasification (that is solid fuel conversion into the gases capable to oxidize with energy liberation) has been known in principle for nearly one hundred years. The distinction is in figures – those of efficiency of the process, that is the ratio of costs and the quantity of obtained power, and environmental safety.

In the gas generator of the “Bauman” installation, sawdust and other waste products (woody, vegetable and even stock-raising, peat and brown coal) are initially dried a little, and then heated at certain temperature in air current. This takes place in several stages in different parts of the generator – in the drying, restoration and combustion zones. Everything is important in the process - temperature conditions and the quantity of materials of which the generator is made, and quantity of oxidant, i.e., atmospheric oxygen. All these parameters were thoroughly determined by the authors based on a large amount of experimental investigations, and engineering and physicochemical calculations.

As a result, power-generating gas coming out of such installation’s gas generator consists nearly by half from a mixture of burning gases, i.e. carbon monoxide, hydrogen, methane and oxygen, and also of carbon dioxide and nitrogen dioxide, which do not burn or damage the environment either. The installation erected in the laboratory of the engineering university, is able to generate 10 kilowatt of electric power. This is not much, but the installation is small – this is rather a pilot variant. In principle, they are designed for generation of 30 kilowatt of electric power, i.e., it is quite possible to provide for example one farm with electric power. Along with that, the farm would get rid of vegetable waste and would reduce expenses on purchase and delivery of the “standard” fuel. Of course, some farmers do not care that much about the contents of any power installation discharge or about they toxicity, as environmental safely of the installation still is not a decisive argument for farmers. Instead, they would appreciate economy and effectiveness. Ecological safety is an inalienable part of the installation.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>