Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise measurement may boost cell phone performance

29.06.2006
Researchers at the National Institute of Standards and Technology (NIST) and industry collaborators have developed improved methods for accurately measuring very faint thermal "noise"--caused by random motion of electrons--in electronic circuits. The technique may help improve the signal range, data rate and battery life of cell phones and other wireless communications devices.

Low background noise typically translates to better performance in electronics, such as longer ranges and clearer signals or higher information-carrying capacity. However, noise too low to measure means that circuit designers cannot tune the system for optimal performance. The NIST research focuses on CMOS (complementary metal oxide semiconductor) transistors, which are inexpensive and widely used in integrated circuits for wireless devices. Noise levels for CMOS transistors have, until now, been too low to measure accurately in much of their signal frequency range (1 – 10 gigahertz), and as a result CMOS circuits may be poorly matched to wireless transmission systems, resulting in significant signal loss.

In a collaboration with IBM Semiconductor Research and Development Center (Essex Junction, Vt.) and RF Micro Devices (Scotts Valley, Calif.), NIST has developed and demonstrated the capability to reliably measure the noise in CMOS devices before they are cut from silicon wafers and packaged. This is believed to be the first method for on-wafer noise measurements directly linked to national standards for thermal noise power. The new measurement methods were described June 12* at the IEEE Radio Frequency Integrated Circuits Symposium in San Francisco.

The team also demonstrated the use of "reverse" noise measurements--focusing on noise emitted from the input of the transistor when incoming signals are reflected and scattered--as a tool for checking overall noise parameters. This method can improve precision, particularly of the optimal impedance properties needed in transistors to minimize noise, the team found. Reverse noise measurements also may help improve modeling of CMOS transistors.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>