Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise measurement may boost cell phone performance

29.06.2006
Researchers at the National Institute of Standards and Technology (NIST) and industry collaborators have developed improved methods for accurately measuring very faint thermal "noise"--caused by random motion of electrons--in electronic circuits. The technique may help improve the signal range, data rate and battery life of cell phones and other wireless communications devices.

Low background noise typically translates to better performance in electronics, such as longer ranges and clearer signals or higher information-carrying capacity. However, noise too low to measure means that circuit designers cannot tune the system for optimal performance. The NIST research focuses on CMOS (complementary metal oxide semiconductor) transistors, which are inexpensive and widely used in integrated circuits for wireless devices. Noise levels for CMOS transistors have, until now, been too low to measure accurately in much of their signal frequency range (1 – 10 gigahertz), and as a result CMOS circuits may be poorly matched to wireless transmission systems, resulting in significant signal loss.

In a collaboration with IBM Semiconductor Research and Development Center (Essex Junction, Vt.) and RF Micro Devices (Scotts Valley, Calif.), NIST has developed and demonstrated the capability to reliably measure the noise in CMOS devices before they are cut from silicon wafers and packaged. This is believed to be the first method for on-wafer noise measurements directly linked to national standards for thermal noise power. The new measurement methods were described June 12* at the IEEE Radio Frequency Integrated Circuits Symposium in San Francisco.

The team also demonstrated the use of "reverse" noise measurements--focusing on noise emitted from the input of the transistor when incoming signals are reflected and scattered--as a tool for checking overall noise parameters. This method can improve precision, particularly of the optimal impedance properties needed in transistors to minimize noise, the team found. Reverse noise measurements also may help improve modeling of CMOS transistors.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>