Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved rating for residential fuel cells

29.06.2006
A new performance rating system for residential fuel cells developed at the National Institute of Standards and Technology (NIST) can help prospective buyers assess the economic value of alternative fuel-cell technologies.

Residential fuel cells now being developed combine hydrogen from natural gas or propane with oxygen from the air to produce electricity. Homeowners might be able to meet all of their energy needs with a residential fuel cell and, in some cases, even sell excess energy to a utility. Currently, PTC 50, an ASME standard, is used to measure fuel cell system performance, but it does not take into account either seasonal changes in heating and cooling requirements, or a residence's quickly changing demands for electricity.

To bridge the gap between the PTC 50 standard and the information that consumers will need to make economic decisions on installing a fuel cell, NIST researchers have published proposed test and rating methods* that will help consumers assess the economic feasibility of four different types of residential fuel cells under different climate conditions in six different geographic locations. The rating will provide the annual electrical energy produced, fuel consumed, thermal energy for domestic water heating and space heating delivered, and water used by the residential fuel cell system.

The four fuel cell types studied include systems that operate independent of the power grid with all generated power used by the residence itself; systems connected to the grid, in which electrical power output remains constant and excess electricity is sold to the utility; systems for thermal space and domestic water heating similarly connected to the grid to supplement the fuel cell power when needed; and similar but smaller systems used primarily for water heating.

The NIST test methodology and performance rating procedure uses building energy simulation results for three days, one each for winter, spring/fall, and summer for a prototypical house located in a representative city within six Department of Energy (DOE) designated climate zones, including Jacksonville, Fla.; Charleston, S.C.; Memphis, Tenn.; Pittsburgh, Pa.; Minneapolis, Minn.; and Astoria, Ore.

The NIST researchers expect to present their test methodology and performance rating procedures to standards organizations this summer. Several manufacturers have provided input on the rating methodology.

John Blair | EurekAlert!
Further information:
http://www.bfrl.nist.gov/863/heat_transfer_group/pubs/NIST_IR_7131.pdf.
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>