Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved rating for residential fuel cells

29.06.2006
A new performance rating system for residential fuel cells developed at the National Institute of Standards and Technology (NIST) can help prospective buyers assess the economic value of alternative fuel-cell technologies.

Residential fuel cells now being developed combine hydrogen from natural gas or propane with oxygen from the air to produce electricity. Homeowners might be able to meet all of their energy needs with a residential fuel cell and, in some cases, even sell excess energy to a utility. Currently, PTC 50, an ASME standard, is used to measure fuel cell system performance, but it does not take into account either seasonal changes in heating and cooling requirements, or a residence's quickly changing demands for electricity.

To bridge the gap between the PTC 50 standard and the information that consumers will need to make economic decisions on installing a fuel cell, NIST researchers have published proposed test and rating methods* that will help consumers assess the economic feasibility of four different types of residential fuel cells under different climate conditions in six different geographic locations. The rating will provide the annual electrical energy produced, fuel consumed, thermal energy for domestic water heating and space heating delivered, and water used by the residential fuel cell system.

The four fuel cell types studied include systems that operate independent of the power grid with all generated power used by the residence itself; systems connected to the grid, in which electrical power output remains constant and excess electricity is sold to the utility; systems for thermal space and domestic water heating similarly connected to the grid to supplement the fuel cell power when needed; and similar but smaller systems used primarily for water heating.

The NIST test methodology and performance rating procedure uses building energy simulation results for three days, one each for winter, spring/fall, and summer for a prototypical house located in a representative city within six Department of Energy (DOE) designated climate zones, including Jacksonville, Fla.; Charleston, S.C.; Memphis, Tenn.; Pittsburgh, Pa.; Minneapolis, Minn.; and Astoria, Ore.

The NIST researchers expect to present their test methodology and performance rating procedures to standards organizations this summer. Several manufacturers have provided input on the rating methodology.

John Blair | EurekAlert!
Further information:
http://www.bfrl.nist.gov/863/heat_transfer_group/pubs/NIST_IR_7131.pdf.
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>