Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rooftop PV data for better energy prediction models

28.06.2006
New generations of photovoltaic (PV) roofing products utilize designs that allow them to be integral parts of the roof, providing both electricity and shelter from the elements. But how effective would they be on your roof? This month the National Institute of Standards and Technology (NIST) began a 15-month research project to help resolve such basic costs concerns.

At its new Roof Photovoltaic Test Facility, NIST is monitoring the electrical performance and thermal performance of seven different residential systems designed for sloped roofs and two commercial building units designed for flat, industrial roofs. The data will be used to evaluate and improve computer algorithms for software simulation programs that predict the installed energy production of photovoltaic roof installations.


NIST's new Roof Photovoltaic Test Facility duplicates real-life conditions to monitor photovoltaic (PV) systems blended into concrete tile, slate and asphalt shingle roofs. Data from PV embedded systems and other framed PV roof modules systems will be used to validate or improve energy prediction models. Credit: NIST

The test photovoltaic systems are blended into concrete tile, slate and asphalt shingle roofs for residential applications and in raised, unframed modules for commercial applications. Each of the nine photovoltaic systems fall within the three general categories of photovoltaic cell technology--single crystalline, polycrystalline and amorphous silicon--with each unit representing different manufacturing processes, materials and design features.

Current, voltage and power output are sampled four times a minute for each test specimen. Ambient temperature, wind speed and the temperature of the test specimens also are measured at numerous locations because the operating temperature of photovoltaic modules affects the conversion efficiency of the units. Finally, the researchers are taking solar radiation measurements at the various planes of the installed roofing projects. Comparative analysis of the solar radiation data will allow NIST researchers to determine the accuracy of solar radiation models that take the horizontal radiation measurements, normally available at airports, and compute the quantity of solar radiation on surfaces at various tile angles.

John Blair | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>