Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists persevere in quest for inexhaustible energy source

31.05.2006


As gas prices soar and greenhouse gases continue to blanket the atmosphere, the need for a clean, safe and cheap source of energy has never seemed more pressing.



Scientists have long worked to meet that need, exploring alternative energy technologies such as wind and solar power. But, after decades of quiet progress, the spotlight is now on another potentially inexhaustible energy source.

Seven countries signed an agreement in Brussels last week (May 24) to launch construction of the multibillion dollar International Thermonuclear Experimental Reactor (ITER) in southern France. The largest fusion-energy experiment ever conducted, ITER is the culmination of years of research by scores of scientists, and is poised to answer long-standing questions about the real-world viability of fusion energy. The United States, China, the European Union, India, Japan, the Republic of Korea and the Russian Federation are joint sponsors of the project, which will experimentally generate up to 500 million watts of energy.


An international collective of physicists and engineers is working to both complement and lend expertise directly to the ITER initiative - and researchers at the University of Wisconsin-Madison are firmly placed among them.

"[ITER] is a major threshold that we’ve been waiting to get to for 20 years," says Raymond Fonck, a UW-Madison professor of engineering physics and the chief scientist of ITER’s U.S. project office. "The project is the No. 1 priority in fusion research in the country and the world, and essentially takes us to a regime we’ve never been to before."

Fusion energy describes the energy that is released when atomic particles "fuse" together to form heavier particles. The process is fundamental to our universe, fueling both the sun and the stars. Here on Earth, physicists have tried to harness the energy potential of nuclear fusion by working with plasma, essentially a collection of particles, such as hydrogen nuclei, that carry electric charge. Because hydrogen can be easily extracted from seawater - a cheap and abundant resource - scientists have been tantalized by the prospect of plasma one day serving as an inexhaustible fuel.

But plasma has to be very, very hot - on the order of millions of degrees - for its gas particles to efficiently collide and release energy. "Basically, we’re trying to make a sun here on Earth," says Stewart Prager, a UW-Madison physics professor, who also advises the U.S. government on national fusion-energy research. "But it turns out to be one of the most difficult scientific problems in the world."

One of the biggest hurdles, of course, is finding a container that can hold searing hot plasma without burning down itself. Scientists have been working around the problem by using invisible magnetic fields to hold the plasma in place, but they are still searching for the most efficient and optimal ways to do it. UW-Madison scientists are delving into pure physics and engineering research questions surrounding the issue. Their work both complements ITER’s goals and, in a sense, looks one step beyond it.

Prager and his team, for instance, run the Madison Symmetric Torus (MST) - the largest fusion-energy experiment on campus. Shaped like a donut, the MST holds plasma heated to 10 million degrees. But instead of using a strong magnetic field to hold the plasma, Prager is exploring whether weaker - and therefore more economical - magnetic fields could accomplish the same task. The work has led to new insights about properties of plasma, and, in turn, has given rise to unique partnerships with astrophysicists, who are using the MST to explore basic questions about the plasma around black holes, galactic discs and other mysterious happenings of the solar system.

"We are now starting to appreciate and explore links between plasmas in the lab and plasmas in the universe, which is really interesting," Prager says.

Working with a device known as Pegasus, Fonck and his group are also exploring weaker magnetic fields, but are approaching the issue in a different way. Unlike the donut shape of the MST, the plasma within Pegasus looks more like a ball with a small hole in it, which influences how the plasma behaves. Fonck’s work relies on the same fundamental physics that is at the heart of ITER’s design, and could one day lead to new methods for testing large-scale components in future fusion reactors.

David Anderson, a professor of electrical and computer engineering and another plasma researcher at UW-Madison, recently made waves when he designed a new device that holds plasma within a magnetic field, without an electric current in the plasma to power the field.

"The current is running in external wires and not in the plasma itself, and that represents a tremendous engineering advantage," says Anderson, who works with a plasma instrument known as the Helically Symmetric eXperiment, the only machine of its kind in the world. Plasma can become unstable in the presence of a current, so Anderson is exploring ways to trick the plasma into staying in place by twisting the surrounding magnetic field into a special - and highly complicated - shape.

"It’s very exciting to work on something that’s totally new and offers potential advantages to the field," says Anderson. "A lot of what we’re all doing here in Wisconsin is looking for what the next research steps will be beyond ITER. In that way, we really do have a unique place in the world’s fusion-energy research program."

Stewart Prager | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>