Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductors get on our nerves

15.11.2001


Peptides could help chips
cling to nerve cells
© SPL


Nerve cells soldered to semiconductors cross computing with neuroscience

Scientists in the United States are soldering nerve cells to semiconductors. Christine Schmidt and colleagues from the University of Texas at Austin use a sliver of protein to connect neurons and tiny crystals of semiconductors called quantum dots1.

This cross between biology and electronics could have useful applications, including the manufacture of prosthetics operated directly by a user’s nerve impulses, and sensors that detect tiny quantities of neurotoxins. It could also help to study how real brains work.



Whether the hybrid heralds a biological computer, a kind of synthetic brain, remains to be seen. It is far from clear whether neurons are any better at computing than the components that are currently used in microelectronic circuitry.

Neurons and electronic logic devices communicate by sending and receiving electrical pulses. The details are different, but neurons can be controlled electronically and neurons can themselves trigger electronic circuits. Researchers have already grown artificial circuits from neurons on silicon chips to monitor nerve activity electronically.

But it is hard to get a smooth dialogue going between neurons and semiconductors. Nerve cells tend to grow over every surface in sight, like lichen over stone, but they don’t stick very closely. The gap they leave produces a poor electrical contact.

Schmidt’s team creates specific, intimate links between neurons and semiconductors using a small protein fragment. One end of this peptide latches onto a nerve cell’s surface; the other sticks to the surface of the semiconductor. Being small, the peptide holds the two surfaces closely together.

One end of the peptide contains a chemical hook that snags a particular protein, called an integrin, that is present on the surface of human neurons. Peptides without this hook don’t attach to nerve cells. At the other end, a sulphur-containing chemical group bonds to the semiconductor cadmium sulphide.

Using these peptides, the researchers stud the surface of a neuron with tiny ’nanocrystals’ of cadmium sulphide, just three millionths of a millimetre (three nanometres) across. The nanocrystal-decorated cell is easy to see under the microscope because the crystals, also known as quantum dots, are fluorescent.

Quantum dots can act as miniature electronic devices, but the same approach could attach neurons to the larger semiconductor components of conventional microelectronic circuits. Another group at the University of Texas has devised peptides that recognize different kinds of semiconductor2., raising the possibility of peptide-solder molecules that are selective at both ends.

References

  1. Winter, J. O., Liu, T. Y., Korgel, B. A. & Schmidt, C. E. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Advanced Materials, 13, 1673 - 1677, (2001).

  2. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Nature, 405, 665 - 668 , (2000).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011115/011115-7.html

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>