Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductors get on our nerves

15.11.2001


Peptides could help chips
cling to nerve cells
© SPL


Nerve cells soldered to semiconductors cross computing with neuroscience

Scientists in the United States are soldering nerve cells to semiconductors. Christine Schmidt and colleagues from the University of Texas at Austin use a sliver of protein to connect neurons and tiny crystals of semiconductors called quantum dots1.

This cross between biology and electronics could have useful applications, including the manufacture of prosthetics operated directly by a user’s nerve impulses, and sensors that detect tiny quantities of neurotoxins. It could also help to study how real brains work.



Whether the hybrid heralds a biological computer, a kind of synthetic brain, remains to be seen. It is far from clear whether neurons are any better at computing than the components that are currently used in microelectronic circuitry.

Neurons and electronic logic devices communicate by sending and receiving electrical pulses. The details are different, but neurons can be controlled electronically and neurons can themselves trigger electronic circuits. Researchers have already grown artificial circuits from neurons on silicon chips to monitor nerve activity electronically.

But it is hard to get a smooth dialogue going between neurons and semiconductors. Nerve cells tend to grow over every surface in sight, like lichen over stone, but they don’t stick very closely. The gap they leave produces a poor electrical contact.

Schmidt’s team creates specific, intimate links between neurons and semiconductors using a small protein fragment. One end of this peptide latches onto a nerve cell’s surface; the other sticks to the surface of the semiconductor. Being small, the peptide holds the two surfaces closely together.

One end of the peptide contains a chemical hook that snags a particular protein, called an integrin, that is present on the surface of human neurons. Peptides without this hook don’t attach to nerve cells. At the other end, a sulphur-containing chemical group bonds to the semiconductor cadmium sulphide.

Using these peptides, the researchers stud the surface of a neuron with tiny ’nanocrystals’ of cadmium sulphide, just three millionths of a millimetre (three nanometres) across. The nanocrystal-decorated cell is easy to see under the microscope because the crystals, also known as quantum dots, are fluorescent.

Quantum dots can act as miniature electronic devices, but the same approach could attach neurons to the larger semiconductor components of conventional microelectronic circuits. Another group at the University of Texas has devised peptides that recognize different kinds of semiconductor2., raising the possibility of peptide-solder molecules that are selective at both ends.

References

  1. Winter, J. O., Liu, T. Y., Korgel, B. A. & Schmidt, C. E. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Advanced Materials, 13, 1673 - 1677, (2001).

  2. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Nature, 405, 665 - 668 , (2000).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011115/011115-7.html

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>