Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind Tower Uses Sun’s Heat To Generate Electricity

19.05.2006


Wind generators are great for producing electricity < unless there isn’t any wind.

But lack of wind isn’t an insurmountable problem, according to a group of UA Engineering students. They’ve been experimenting with a design that doesn’t depend on the vagaries of natural wind. Instead, their design produces its own airflow by trapping heat from the sun and then allowing the heated air to escape through a chimney-like tower to an area of lower pressure and cooler air.

The students built a scale model to test their theories and to develop a set of scaling laws to accurately predict the power output of a "wind tower," depending on its diameter, collector area, height and many other factors.

"Our idea was to optimize the geometry to see how the tower height and the tower diameter affect the airflow," said Mechanical Engineering senior Andy Lovelace. "We found that as the tower gets bigger, the power generated goes up exponentially. So if you double the size, you get four times the power."

Knowing how the design’s variables change with size allowed the students to develop equations from which they can accurately predict the power output of wind towers of any size.

"The other part of our project was to design a scale model so we could take data to verify that our equations accurately predict wind tower performance," he said.

A REPLACEMENT FOR GAS- AND COAL-FIRED PLANTS

"Wind towers are not like solar cells, where you power a house," he added. "We’re talking about competing with a gas- or coal-fired power plant."

In 1982, engineers built a small-scale wind tower in Spain that ran for eight years. It had a 640-foot-tall tower, a collection area of about 500 square feet, and a maximum output of about 50 kilowatts.

"My friend, Rudi Bergermann, developed the plant in Manzanares, Spain and brought this concept to my attention," said Professor Hermann Fasel, who sponsored the UA wind tower project. "He got me excited about doing serious research on this concept." Fasel is a professor in the Aerospace and Mechanical Engineering Department.

In addition to funding the project, Fasel was the team’s faculty advisor and spent many hours mentoring the group. "This is one of the best teams I’ve advised in a long time, as well as the photovoltaic power unit team that won the PDAT Best Mechanical Design Award at Engineering Design Day."

In addition to the Manzanaras plant, a wind tower with a height of 1,640 feet is proposed for construction in Australia.

The students’ tower is a much more modest effort, at just 12 feet tall. But it’s an accurate scale model from which data can be taken and then scaled up to predict the performance of commercial-sized wind towers.

The students’ tower has a circular collector constructed from a surplus trampoline frame covered with transparent Mylar. The chimney is a length of ABS pipe and their generator is a tiny cell phone motor modified to run in reverse. The motor originally powered a vibration alert mechanism in the phone.

A cone at the base of he tower helps to direct the airflow so it doesn’t meet a 90-degree bend at the junction of the horizontal collector surface and vertical tower. "We tried to keep the flow as efficient as possible," Lovelace said.

COLLECTOR AIR HEATED TO 200 DEGREES

On a 90-degree day, the air under the collector was heated to 200 degrees Fahrenheit and created a wind speed of about 2.25 mph as it escaped through the tower. This produces a power output of about a half watt. The team had anticipated a wind speed of about 6 mph. The lower speed is caused by the prototype’s short tower and its scale-model design, said team member Dave Klawon.

If the tower had been optimized for small size, it would have produced significantly greater wind speeds, but it wouldn’t have provided the performance data the team needed to verify their equations for mega-watt-sized towers.

Analyzing the tower’s thermodynamics and applying that to developing equations and designs was the most difficult part of the process, Klawon said. "The thermodynamics was a lot more complicated than anything we’ve seen in class, and it was a great learning process."

Fasel intends to sponsor another wind tower team next semester for further development of the concept. This will include building a tower about 40 feet tall that has a collection area of 14 square feet. This should provide enough airflow to power a small turbine, Lovelace said.

INITIAL COSTS ARE HIGHER AND MORE LAND IS NEEDED

Although wind towers have zero emissions and many other benefits, they do have two problems, Lovelace noted: They cost more to build than conventional power plants and they require huge, greenhouse-like collection areas. However, over the long term, they’re cheaper than conventional power plants because they require little maintenance, have no fuel costs and < unlike nuclear power plants < no hazardous waste to dispose of.

In places where large amounts of open land exist, such as the American West and Australia, the large collection area isn’t as big a problem, he added.

"There are so many different ways you can go into optimizing the performance of wind towers," Lovelace said. "We got a good optimization of the tower geometry, but now it’s up to future teams to look at the other variables."

In addition to Lovelace and Klawon, the wind tower team included Mechanical Engineering seniors Oscar Rueda and Gabriel Secrest.

Ed Stiles | University of Arizona Engineerin
Further information:
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>