Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind Tower Uses Sun’s Heat To Generate Electricity

19.05.2006


Wind generators are great for producing electricity < unless there isn’t any wind.

But lack of wind isn’t an insurmountable problem, according to a group of UA Engineering students. They’ve been experimenting with a design that doesn’t depend on the vagaries of natural wind. Instead, their design produces its own airflow by trapping heat from the sun and then allowing the heated air to escape through a chimney-like tower to an area of lower pressure and cooler air.

The students built a scale model to test their theories and to develop a set of scaling laws to accurately predict the power output of a "wind tower," depending on its diameter, collector area, height and many other factors.

"Our idea was to optimize the geometry to see how the tower height and the tower diameter affect the airflow," said Mechanical Engineering senior Andy Lovelace. "We found that as the tower gets bigger, the power generated goes up exponentially. So if you double the size, you get four times the power."

Knowing how the design’s variables change with size allowed the students to develop equations from which they can accurately predict the power output of wind towers of any size.

"The other part of our project was to design a scale model so we could take data to verify that our equations accurately predict wind tower performance," he said.

A REPLACEMENT FOR GAS- AND COAL-FIRED PLANTS

"Wind towers are not like solar cells, where you power a house," he added. "We’re talking about competing with a gas- or coal-fired power plant."

In 1982, engineers built a small-scale wind tower in Spain that ran for eight years. It had a 640-foot-tall tower, a collection area of about 500 square feet, and a maximum output of about 50 kilowatts.

"My friend, Rudi Bergermann, developed the plant in Manzanares, Spain and brought this concept to my attention," said Professor Hermann Fasel, who sponsored the UA wind tower project. "He got me excited about doing serious research on this concept." Fasel is a professor in the Aerospace and Mechanical Engineering Department.

In addition to funding the project, Fasel was the team’s faculty advisor and spent many hours mentoring the group. "This is one of the best teams I’ve advised in a long time, as well as the photovoltaic power unit team that won the PDAT Best Mechanical Design Award at Engineering Design Day."

In addition to the Manzanaras plant, a wind tower with a height of 1,640 feet is proposed for construction in Australia.

The students’ tower is a much more modest effort, at just 12 feet tall. But it’s an accurate scale model from which data can be taken and then scaled up to predict the performance of commercial-sized wind towers.

The students’ tower has a circular collector constructed from a surplus trampoline frame covered with transparent Mylar. The chimney is a length of ABS pipe and their generator is a tiny cell phone motor modified to run in reverse. The motor originally powered a vibration alert mechanism in the phone.

A cone at the base of he tower helps to direct the airflow so it doesn’t meet a 90-degree bend at the junction of the horizontal collector surface and vertical tower. "We tried to keep the flow as efficient as possible," Lovelace said.

COLLECTOR AIR HEATED TO 200 DEGREES

On a 90-degree day, the air under the collector was heated to 200 degrees Fahrenheit and created a wind speed of about 2.25 mph as it escaped through the tower. This produces a power output of about a half watt. The team had anticipated a wind speed of about 6 mph. The lower speed is caused by the prototype’s short tower and its scale-model design, said team member Dave Klawon.

If the tower had been optimized for small size, it would have produced significantly greater wind speeds, but it wouldn’t have provided the performance data the team needed to verify their equations for mega-watt-sized towers.

Analyzing the tower’s thermodynamics and applying that to developing equations and designs was the most difficult part of the process, Klawon said. "The thermodynamics was a lot more complicated than anything we’ve seen in class, and it was a great learning process."

Fasel intends to sponsor another wind tower team next semester for further development of the concept. This will include building a tower about 40 feet tall that has a collection area of 14 square feet. This should provide enough airflow to power a small turbine, Lovelace said.

INITIAL COSTS ARE HIGHER AND MORE LAND IS NEEDED

Although wind towers have zero emissions and many other benefits, they do have two problems, Lovelace noted: They cost more to build than conventional power plants and they require huge, greenhouse-like collection areas. However, over the long term, they’re cheaper than conventional power plants because they require little maintenance, have no fuel costs and < unlike nuclear power plants < no hazardous waste to dispose of.

In places where large amounts of open land exist, such as the American West and Australia, the large collection area isn’t as big a problem, he added.

"There are so many different ways you can go into optimizing the performance of wind towers," Lovelace said. "We got a good optimization of the tower geometry, but now it’s up to future teams to look at the other variables."

In addition to Lovelace and Klawon, the wind tower team included Mechanical Engineering seniors Oscar Rueda and Gabriel Secrest.

Ed Stiles | University of Arizona Engineerin
Further information:
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>