Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind Tower Uses Sun’s Heat To Generate Electricity

19.05.2006


Wind generators are great for producing electricity < unless there isn’t any wind.

But lack of wind isn’t an insurmountable problem, according to a group of UA Engineering students. They’ve been experimenting with a design that doesn’t depend on the vagaries of natural wind. Instead, their design produces its own airflow by trapping heat from the sun and then allowing the heated air to escape through a chimney-like tower to an area of lower pressure and cooler air.

The students built a scale model to test their theories and to develop a set of scaling laws to accurately predict the power output of a "wind tower," depending on its diameter, collector area, height and many other factors.

"Our idea was to optimize the geometry to see how the tower height and the tower diameter affect the airflow," said Mechanical Engineering senior Andy Lovelace. "We found that as the tower gets bigger, the power generated goes up exponentially. So if you double the size, you get four times the power."

Knowing how the design’s variables change with size allowed the students to develop equations from which they can accurately predict the power output of wind towers of any size.

"The other part of our project was to design a scale model so we could take data to verify that our equations accurately predict wind tower performance," he said.

A REPLACEMENT FOR GAS- AND COAL-FIRED PLANTS

"Wind towers are not like solar cells, where you power a house," he added. "We’re talking about competing with a gas- or coal-fired power plant."

In 1982, engineers built a small-scale wind tower in Spain that ran for eight years. It had a 640-foot-tall tower, a collection area of about 500 square feet, and a maximum output of about 50 kilowatts.

"My friend, Rudi Bergermann, developed the plant in Manzanares, Spain and brought this concept to my attention," said Professor Hermann Fasel, who sponsored the UA wind tower project. "He got me excited about doing serious research on this concept." Fasel is a professor in the Aerospace and Mechanical Engineering Department.

In addition to funding the project, Fasel was the team’s faculty advisor and spent many hours mentoring the group. "This is one of the best teams I’ve advised in a long time, as well as the photovoltaic power unit team that won the PDAT Best Mechanical Design Award at Engineering Design Day."

In addition to the Manzanaras plant, a wind tower with a height of 1,640 feet is proposed for construction in Australia.

The students’ tower is a much more modest effort, at just 12 feet tall. But it’s an accurate scale model from which data can be taken and then scaled up to predict the performance of commercial-sized wind towers.

The students’ tower has a circular collector constructed from a surplus trampoline frame covered with transparent Mylar. The chimney is a length of ABS pipe and their generator is a tiny cell phone motor modified to run in reverse. The motor originally powered a vibration alert mechanism in the phone.

A cone at the base of he tower helps to direct the airflow so it doesn’t meet a 90-degree bend at the junction of the horizontal collector surface and vertical tower. "We tried to keep the flow as efficient as possible," Lovelace said.

COLLECTOR AIR HEATED TO 200 DEGREES

On a 90-degree day, the air under the collector was heated to 200 degrees Fahrenheit and created a wind speed of about 2.25 mph as it escaped through the tower. This produces a power output of about a half watt. The team had anticipated a wind speed of about 6 mph. The lower speed is caused by the prototype’s short tower and its scale-model design, said team member Dave Klawon.

If the tower had been optimized for small size, it would have produced significantly greater wind speeds, but it wouldn’t have provided the performance data the team needed to verify their equations for mega-watt-sized towers.

Analyzing the tower’s thermodynamics and applying that to developing equations and designs was the most difficult part of the process, Klawon said. "The thermodynamics was a lot more complicated than anything we’ve seen in class, and it was a great learning process."

Fasel intends to sponsor another wind tower team next semester for further development of the concept. This will include building a tower about 40 feet tall that has a collection area of 14 square feet. This should provide enough airflow to power a small turbine, Lovelace said.

INITIAL COSTS ARE HIGHER AND MORE LAND IS NEEDED

Although wind towers have zero emissions and many other benefits, they do have two problems, Lovelace noted: They cost more to build than conventional power plants and they require huge, greenhouse-like collection areas. However, over the long term, they’re cheaper than conventional power plants because they require little maintenance, have no fuel costs and < unlike nuclear power plants < no hazardous waste to dispose of.

In places where large amounts of open land exist, such as the American West and Australia, the large collection area isn’t as big a problem, he added.

"There are so many different ways you can go into optimizing the performance of wind towers," Lovelace said. "We got a good optimization of the tower geometry, but now it’s up to future teams to look at the other variables."

In addition to Lovelace and Klawon, the wind tower team included Mechanical Engineering seniors Oscar Rueda and Gabriel Secrest.

Ed Stiles | University of Arizona Engineerin
Further information:
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>