Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Optimising the control of wind generators by means of intelligent microsensors


The School of Engineering at Bayonne (ESTIA) is working on a research project on control optimisation for the latest-generation wind generators using intelligent microsensors.

The latest-generation wind generators work at variable speed and with pitch regulation based on the pitch angle of the rotor blades. These degrees of freedom (the rotation speed and the pitch angle of each blade) enable an increase in energy yield, a decrease in fatigue due to mechanical loads and an enhancement in the quality of the electrical potential with respect to fixed-speed wind turbines. The rotation speed and the pitch angle of the blades are controlled continuously by control algorithms and the quality of these algorithms have a determining influence on the price of the energy produced by the wind generators. Although a large amount of research work on wind generator control has been undertaken, it still remains for more “intelligence” to be introduced into their functioning.

The reduction in the price of wind energy is made possible through:

- increasing the reliability and robustness of wind generators
- increasing the energy yield
- manufacturing lighter wind generators.

This weight reduction can be achieved only by reducing the mechanical forces on the blades, the transmission axle and the tower. Moreover, the current trend in increasing the size of wind generators means having mechanically more flexible machines. The control has to take into account this flexibility, especially avoiding the resonance frequencies of the various mechanical elements.

Thus, the classical criteria linked to the optimisation of control algorithms for variable-speed and pitch-regulated wind generators are:

- the quality of the electrical potential produced
- the reduction in the dynamic loads to which the wind generator structure is subjected
- the energy yield
- the robustness of the control algorithms developed.

Within the framework of this question, the ESTIA School of Engineering is particularly focusing on criteria dealing with the reduction of the mechanical stresses arising from fatigue in the elements of a wind generator (tower, blades, transmission axle/gearbox).

Fatigue in a wind generator’s elements is mainly linked with the external dynamic forces that these parts undergo and with the fluctuations in their resonance frequencies. Control of the wind generator should enable an overall reduction in these stresses in order to increase reliability and, thereby, the usefulness of wind generators, and enable a reduction in the overall weight of their components. The main loads are those withstood by the blades, the tower and the transmission axle/gearbox. The design of the control algorithms has to take into account this reduction in the mechanical stresses in these components. Several degrees of freedom exist in order to achieve this target: the two of the electric motor, the pitch angle for each blade (three for the classical wind generator) and the orientation (the “yaw”) of the whole turbine with respect to the tower axis. This last parameter is not within the remit of this current research project.

The design of this control should take into account not just one of the four criteria previously mentioned. Although the main objective here is the reduction of dynamic stresses experienced by the wind generator, the other criteria are not forgotten.

Intelligent microsensors (acceleration sensors with wireless communication) located at the blade tips, above the surface of the wind generator axis and in the tower will be used to optimise the control.

Thanks to these acceleration sensors, the control system will have supplementary information in real time, thus enabling reduction in fatigue stresses using multivariable optimisation algorithms.

Commercial wind generators are fitted with a number of sensors (voltage, current, rotation velocity, etc.). Nevertheless, they are currently not fitted with acceleration or with stress sensors.

Irati Kortabitarte | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>