Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Chip Design Delivers Better Performance, Longer Battery Life for Cell Phones, WiFi, and Other Wireless Communications

21.04.2006


Anyone who uses a cell phone or a WiFi laptop knows the irritation of a dead-battery surprise. But now researchers at the University of Rochester have broken a barrier in wireless chip design that uses a tenth as much battery power as current designs and, better yet, will use much less in emerging wireless devices of the future.



Hui Wu, professor of electrical and computer engineering at the University of Rochester, a pioneer in a circuit design called an "injection locked frequency divider," or ILFD, has solved the last hurdle to making the new method work. Wireless chip manufacturers have been aware of ILFD and its ability to ensure accurate data transfer using much less energy than traditional digital methods, but the technique had two fatal flaws: it could not handle a wide range of frequencies, and could not ensure a fine enough resolution within that range. Wu, together with Ali Hajimiri, associate professor of electrical engineering at California Institute of Technology, surmounted the first problem in 2001, and has now found a solution for the latter.

When a cell phone or a laptop using WiFi or Bluetooth communicates wirelessly, the data is transmitted at very specific frequencies. One person can talk on a cell phone at a frequency of 2.0001 gigahertz, and someone else nearby can talk at 2.0002 gigahertz, and neither one will pick up the other’s conversation. In order to make sure it is both listening for and sending information on exactly the right frequency at all times, the phone must maintain a very accurate and stable clock, which is generated by a special circuit called "phase-locked loop." This circuit consumes a dramatic portion of the battery usage on wireless devices.


Wu’s ILFD method uses less power than conventional digital methods because the tiny "ones" and "zeroes" that comprise digital information waste energy. Digital circuitry checks the frequency by counting each pulse of the clock one at a time. When a one is needed, the system sends electricity to the right node on a chip, and that node then represents a one. When the system then calls for a zero, that stored energy is simply released from the circuit as heat, and the node resets to a low-energy state. Do this several billion times a second, and quite a bit of energy in the form of those dissipated ones is simply wasted. An ILFD device, on the other hand, does not use a brute-force approach of counting each pulse. To gauge and stabilize the generated frequency, a phase-locked loop multiplies the pulse from a highly-stable reference clock, such as a quartz crystal oscillator, up to the desired frequency. To check if the output frequency is correct, a frequency divider essentially undoes the multiplying process, and the result can then be compared to the initial clock, with adjustments made as needed.

ILFDs use an analog method that requires less power, but the Achilles’ heel of ILFDs has always been their inability to efficiently and reliably divide the frequency by anything but two—a serious drawback to achieve fine frequency resolution, which is a must for modern communication systems.

This is where Wu’s new design makes the practical application of ILFDs possible. He introduced a new topology into this circuitry—instead of the old three-transistor design, his has five transistors—creating what he calls "differential mixing." The new circuitry topology allows the ILFD to divide by three as well as two.

This tiny change has huge ramifications. A circuit design that can divide by two or three can, for instance, divide 9,999 clock pulses by two, and the 10,000th by 3, giving an average of 2.0001, which could be the frequency at which the cell phone is trying to communicate. Should the phone need to communicate at 2.0002 gigahertz, the ILFD could divide 9,998 clock pulses by two, and the 9,999th and 10,000th by three, yielding an average of 2.0002. By varying how many clock pulses are divided by two or by three, any frequency can be selected, making the power-saving ILFD method viable for the first time.

Wu has demonstrated another benefit of his "Divide-by-Odd-Number ILFD." In an effort to move more data faster, wireless manufacturers are looking to move to ever-higher frequencies. A 900-megahertz cordless phone, for instance, was once considered state of the art, but soon cordless phones migrated to 2.4 gigahertz, and now 5.8 gigahertz. Likewise, WiFi and other wireless networking devices will soon be pushing into the proposed 60 gigahertz band. At such high frequencies, a digital frequency divider will be hard pressed to keep up such speed, and will demand ever-more power to do so, but Wu’s ILFD will be much less demanding and will use proportionately less power as the frequency increases.

Wu’s group has designed and fabricated several prototype chips, and the results successfully demonstrated his concepts. One of them, an 18 gigahertz divide-by-3 ILFD, was recently presented at this year’s International Solid-State Circuits Conference, the premiere technical conference in semiconductor industries. Wu is also working on other power-saving aspects of chip design that he hopes can be used to stretch the battery life of wireless devices even further.

About the University of Rochester

The University of Rochester is one of the nation’s leading private universities. Located in Rochester, N.Y., the University’s environment gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty. Its College of Arts, Sciences, and Engineering is complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, and Schools of Medicine and Nursing.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>