Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart coatings project aims to bring more readable display screens

18.04.2006


Smart coatings that should allow cash machine, mobile phone and laptop display screens to be read much more easily in bright sunlight could soon be on the way, thanks to a major research project unveiled today.



Scientists from the University of Abertay Dundee and the University of Greenwich are joining forces with specialist screen and thin film coatings manufacturers in the £600,000 ENDSENSE project, which is part-funded by the Department of Trade & Industry.

The two-year project aims to develop new coatings for flat-panel display screens that will be able to sense light levels and adjust the output of the display to improve readability and efficiency.


Specialist custom electronics manufacturers Micro Circuit Engineering Ltd (Tewkesbury and Newmarket) and Thin Film Solutions Ltd (Glasgow) will develop new designs of screen assemblies with novel coatings, and the two universities will collaborate to provide sophisticated usability testing and computer modelling to test the new designs.

The results of the project will enable traditional and emerging display technologies to be more viewable and energy efficient in a wide range of ambient light conditions. As well as better displays for a wide variety of applications, the research team believes that its new technology could also open up other applications in solar cells and photovoltaic devices.

Dr Colin Cartwright of Abertay University’s School of Computing & Creative Technologies, said: “In conventional displays, separate filters in the system govern the optical performance of the display’s uniformity, brightness and contrast. What we hope to do with the new approach is to develop thin film coating materials that combine several optical functions to produce a more sensitive, higher performance, more energy efficient and lower cost display.

“Integrating many optical functions, possibly with conflicting mechanical, thermal, electrical and visual requirements is a major technical challenge, so we need rigorous computer modeling of all the variables. This will give us an integrated design tool that can be used for existing and future smart display technologies, and give the UK an unrivalled capability for producing smart optics for display applications.”

Professor Chris Bailey at Greenwich University will contribute multi-physics modeling, optimization and reliability. He said: “Manufacturers of devices incorporating displays will be able to specify and integrate optical components into their products that are a major advance on current display systems. By optimizing the optics of the displays, they will be able to offer greatly improved readability in high brightness conditions, slim form factors, good contrast ratios and wide viewing angles in their products. In addition, the feedback and control offered by the new smart coatings will reduce energy consumption by two to three times, extend service life and reduce ownership costs.”

The worldwide market for displays of all kinds is estimated to be more than £20 billion, giving any technological improvement a huge sales potential. Manufacturers of cash machines, automotive and marine displays have already expressed interest in the outcome of this project.

Kevin Coe | alfa
Further information:
http://endsense.cms.gre.ac.uk/
http://www.abertay.ac.uk

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>