Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart coatings project aims to bring more readable display screens

18.04.2006


Smart coatings that should allow cash machine, mobile phone and laptop display screens to be read much more easily in bright sunlight could soon be on the way, thanks to a major research project unveiled today.



Scientists from the University of Abertay Dundee and the University of Greenwich are joining forces with specialist screen and thin film coatings manufacturers in the £600,000 ENDSENSE project, which is part-funded by the Department of Trade & Industry.

The two-year project aims to develop new coatings for flat-panel display screens that will be able to sense light levels and adjust the output of the display to improve readability and efficiency.


Specialist custom electronics manufacturers Micro Circuit Engineering Ltd (Tewkesbury and Newmarket) and Thin Film Solutions Ltd (Glasgow) will develop new designs of screen assemblies with novel coatings, and the two universities will collaborate to provide sophisticated usability testing and computer modelling to test the new designs.

The results of the project will enable traditional and emerging display technologies to be more viewable and energy efficient in a wide range of ambient light conditions. As well as better displays for a wide variety of applications, the research team believes that its new technology could also open up other applications in solar cells and photovoltaic devices.

Dr Colin Cartwright of Abertay University’s School of Computing & Creative Technologies, said: “In conventional displays, separate filters in the system govern the optical performance of the display’s uniformity, brightness and contrast. What we hope to do with the new approach is to develop thin film coating materials that combine several optical functions to produce a more sensitive, higher performance, more energy efficient and lower cost display.

“Integrating many optical functions, possibly with conflicting mechanical, thermal, electrical and visual requirements is a major technical challenge, so we need rigorous computer modeling of all the variables. This will give us an integrated design tool that can be used for existing and future smart display technologies, and give the UK an unrivalled capability for producing smart optics for display applications.”

Professor Chris Bailey at Greenwich University will contribute multi-physics modeling, optimization and reliability. He said: “Manufacturers of devices incorporating displays will be able to specify and integrate optical components into their products that are a major advance on current display systems. By optimizing the optics of the displays, they will be able to offer greatly improved readability in high brightness conditions, slim form factors, good contrast ratios and wide viewing angles in their products. In addition, the feedback and control offered by the new smart coatings will reduce energy consumption by two to three times, extend service life and reduce ownership costs.”

The worldwide market for displays of all kinds is estimated to be more than £20 billion, giving any technological improvement a huge sales potential. Manufacturers of cash machines, automotive and marine displays have already expressed interest in the outcome of this project.

Kevin Coe | alfa
Further information:
http://endsense.cms.gre.ac.uk/
http://www.abertay.ac.uk

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>