Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless sensor networks offer high-tech assurance for a world wary of earthquakes

10.04.2006


Fitted with computer chips, sensors monitor a bridge’s health – and its ability to perform after a catastrophe

An earthquake strikes a large city, wrecking roads and bridges, stranding rush-hour commuters, trapping office workers inside high-rise buildings.

As director of the city’s transportation authority, you have minutes to make a momentous decision. What is the safest, fastest route that rescue teams can take to travel to hard-hit areas of the city? Which bridges, even if damaged, can still support traffic loads?



Questions like these are increasingly on the minds of structural engineers and emergency personnel as the world prepares to mark the 100th anniversary of the Great San Francisco Earthquake of April 18, 1906.

The answers to the questions, says Yunfeng Zhang, can be provided by sensors – networks of tiny sensors with built-in computer chips that are attached to a bridge to monitor its safety and performance.

Sensors deployed strategically on a bridge, says Zhang, an assistant professor of civil and environmental engineering at Lehigh University, can provide a high-resolution, multi-dimensional picture of the health of a structure, giving engineers vital information about a bridge’s performance and, in the aftermath of a catastrophe, its ability to carry traffic.

To be useful in the event of an earthquake or other emergency, says Zhang, sensor data must be transmitted in real time, virtually without delay, to remote processing centers for interpretation and then to decision-makers.

Wired sensors can transmit data in real time but they have limitations, says Zhang. Installing and maintaining the wires is costly and labor-intensive. Wires degrade and are prone to interference from electro-magnetic signals. And wires themselves might get damaged in earthquakes.

Zhang recently received a five-year, $400,000 CAREER Award from the National Science Foundation to develop wireless sensor networks for bridges and other structures with the aim of improving the transmission of sensor data and the ease in accessing the data. The project is titled "Integrated Research and Education in Smart Sensing and Intelligent Structures Technology."

Wireless sensor networks, which are relatively new, avoid many of the problems that hamper wired sensors. But they face obstacles. The relatively narrow communication bandwidth available for civil-engineering wireless sensors can reduce download rates to one kilobyte per second, not nearly fast enough to crunch the enormous amounts of data generated by a bridge in operation.

To improve data transmission and management, Zhang is developing high-performance sensor data compression algorithms for structural health monitoring applications. (An algorithm is a set of rules or computational procedure for solving a problem.) His algorithms incorporate structural system information to remove redundancies from sensor data and thus maximize the compression rates for sensor network data. Zhang also uses data-mining techniques to extract key information more efficiently from data.

"Using the sensor data compression algorithm I’m developing," he says, "we can minimize data-downloading time and ultimately download data in real time and evaluate it in near real-time basis."

Zhang’s research draws on structural engineering, systems science, information technology, as well as electrical engineering.

As part of his NSF project, Zhang plans to implement a wireless sensor network on a cable-stayed bridge in eastern China to monitor its structural health and operating condition. The bridge, built in 2000, was accidentally damaged during construction and its actual operating condition is thus different from its design condition. The bridge was repaired and is operating, says Zhang, but aggressive monitoring is needed to ensure that it can continue to be safely used by traffic.

Using wireless sensor networks that Zhang will help develop, Zhang and the Chinese engineers are planning to conduct a full-scale validation test on the Chinese bridge in 2009.

Zhang says the data he collects from testing the Chinese bridge will also be useful for bridge operators in the U.S., where cable-stayed bridges have a relatively short history of use and have not yet generated a large body of data.

As part of his NSF award, Zhang will incorporate his research into his classes. This spring, Zhang is teaching an upper-level undergraduate course in smart structures technology that he first taught as a graduate course in 2004.

In the course, students will construct a Japanese pagoda and attempt to shed light on an ancient mystery – why, in earthquake-plagued Japan, the wooden temples have for centuries withstood seismic forces much better than any other type of structure.

Zhang, who joined the faculty in 2001, believes the smart structure technology course is the first civil engineering course in the U.S. to integrate sensors, control, smart materials, information technology, structural engineering and structural health monitoring. Twelve senior civil engineering majors and five grad students are enrolled in the course this spring.

"I want to educate the next generation of engineers about an exciting technology that has broad future applications," says Zhang. "Smart structure technology is only in the developmental stages, but as educators, we need to plan ahead so that when this technology is available in 10 years, our graduates will know how to utilize it."

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>