Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wireless sensor networks offer high-tech assurance for a world wary of earthquakes


Fitted with computer chips, sensors monitor a bridge’s health – and its ability to perform after a catastrophe

An earthquake strikes a large city, wrecking roads and bridges, stranding rush-hour commuters, trapping office workers inside high-rise buildings.

As director of the city’s transportation authority, you have minutes to make a momentous decision. What is the safest, fastest route that rescue teams can take to travel to hard-hit areas of the city? Which bridges, even if damaged, can still support traffic loads?

Questions like these are increasingly on the minds of structural engineers and emergency personnel as the world prepares to mark the 100th anniversary of the Great San Francisco Earthquake of April 18, 1906.

The answers to the questions, says Yunfeng Zhang, can be provided by sensors – networks of tiny sensors with built-in computer chips that are attached to a bridge to monitor its safety and performance.

Sensors deployed strategically on a bridge, says Zhang, an assistant professor of civil and environmental engineering at Lehigh University, can provide a high-resolution, multi-dimensional picture of the health of a structure, giving engineers vital information about a bridge’s performance and, in the aftermath of a catastrophe, its ability to carry traffic.

To be useful in the event of an earthquake or other emergency, says Zhang, sensor data must be transmitted in real time, virtually without delay, to remote processing centers for interpretation and then to decision-makers.

Wired sensors can transmit data in real time but they have limitations, says Zhang. Installing and maintaining the wires is costly and labor-intensive. Wires degrade and are prone to interference from electro-magnetic signals. And wires themselves might get damaged in earthquakes.

Zhang recently received a five-year, $400,000 CAREER Award from the National Science Foundation to develop wireless sensor networks for bridges and other structures with the aim of improving the transmission of sensor data and the ease in accessing the data. The project is titled "Integrated Research and Education in Smart Sensing and Intelligent Structures Technology."

Wireless sensor networks, which are relatively new, avoid many of the problems that hamper wired sensors. But they face obstacles. The relatively narrow communication bandwidth available for civil-engineering wireless sensors can reduce download rates to one kilobyte per second, not nearly fast enough to crunch the enormous amounts of data generated by a bridge in operation.

To improve data transmission and management, Zhang is developing high-performance sensor data compression algorithms for structural health monitoring applications. (An algorithm is a set of rules or computational procedure for solving a problem.) His algorithms incorporate structural system information to remove redundancies from sensor data and thus maximize the compression rates for sensor network data. Zhang also uses data-mining techniques to extract key information more efficiently from data.

"Using the sensor data compression algorithm I’m developing," he says, "we can minimize data-downloading time and ultimately download data in real time and evaluate it in near real-time basis."

Zhang’s research draws on structural engineering, systems science, information technology, as well as electrical engineering.

As part of his NSF project, Zhang plans to implement a wireless sensor network on a cable-stayed bridge in eastern China to monitor its structural health and operating condition. The bridge, built in 2000, was accidentally damaged during construction and its actual operating condition is thus different from its design condition. The bridge was repaired and is operating, says Zhang, but aggressive monitoring is needed to ensure that it can continue to be safely used by traffic.

Using wireless sensor networks that Zhang will help develop, Zhang and the Chinese engineers are planning to conduct a full-scale validation test on the Chinese bridge in 2009.

Zhang says the data he collects from testing the Chinese bridge will also be useful for bridge operators in the U.S., where cable-stayed bridges have a relatively short history of use and have not yet generated a large body of data.

As part of his NSF award, Zhang will incorporate his research into his classes. This spring, Zhang is teaching an upper-level undergraduate course in smart structures technology that he first taught as a graduate course in 2004.

In the course, students will construct a Japanese pagoda and attempt to shed light on an ancient mystery – why, in earthquake-plagued Japan, the wooden temples have for centuries withstood seismic forces much better than any other type of structure.

Zhang, who joined the faculty in 2001, believes the smart structure technology course is the first civil engineering course in the U.S. to integrate sensors, control, smart materials, information technology, structural engineering and structural health monitoring. Twelve senior civil engineering majors and five grad students are enrolled in the course this spring.

"I want to educate the next generation of engineers about an exciting technology that has broad future applications," says Zhang. "Smart structure technology is only in the developmental stages, but as educators, we need to plan ahead so that when this technology is available in 10 years, our graduates will know how to utilize it."

Kurt Pfitzer | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>