Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device only atoms across may allow infinitesimal but powerful computers

05.04.2006


Single-molecule diode may change Moore’s ’law’ of microchip memory



Using the power of modern computing combined with innovative theoretical tools, an international team of researchers has determined how a one-way electrical valve, or diode, made of only a single molecule does its job.

Diodes are critical components within computer, audio equipment and countless other electronic devices. If designers can swap existing diodes with the single-molecule one, the products could be shrunk to incredibly small sizes.


The technology may allow computer designers to sustain "Moore’s Law"--a prediction made by Intel co-founder Gordon Moore in 1965--which suggested technological advances will allow a doubling every 18 months in the number of transistors that can fit on a computer chip. But the "law" has been nearing the end of its useful life as ever-shrinking silicon chips approach their physical limits.

Created by a research team at the University of Chicago, the single-molecule diode is merely a few tens of atoms in size and 1,000 times smaller than its conventional counterparts. Recently, theorists from the University of South Florida and the Russian Academy of Sciences have explained the principles that make the device work.

The researchers showed electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another. Because the molecule in the diode is asymmetrical, the electronic response is also asymmetrical when voltage is applied. The asymmetry contributes to a phenomenon called molecular rectification: the channels conduct electrons in one direction, but limit flow in the opposite direction when the voltage polarity reverses. That property makes the molecular diode a potential gatekeeper for circuits and a candidate to one day replace silicon in computer chips.

Joshua Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>