Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar cell manufacturing process examined with a view to increasing cell efficiency

04.04.2006


Electro-optical characterization of in-situ indium doped CdS thin films by chemical bath



As the world becomes increasingly aware of global warming and climate change, the need for alternative energy sources is generating greater demand. Electricity generated from solar cells is often quoted as being the solution to our climate problems. Unfortunately, this method of energy generation is quite inefficient. Overcoming this inefficiency is key to the widespread commercial acceptance of solar energy.

Recent years have seen Indium doped Cadmium Sulfide thin films gain importance as photovoltaic devices. Various techniques have been used to make the CdS:In thin films with chemical baths being most widely used. Due to this acceptance of the manufacturing method, it is important to develop an effective technique to n-dope CdS thin films during the growth process.


In this journal* article by Mexican researchers, J. A. Dávila-Pintle, R. Lozada-Morales, R. Palomino-Merino, B. Rebollo-Plata, C. Martínez-Hipatl, O. Portillo-Moreno, S. Jiménez-Sandoval and O. Zelaya-Ángel, from Benemérita Universidad Autónoma de Puebla and Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional looked to increase the carrier density and to reduce the electrical resistivity of the material - with no sensitive reduction of the forbidden energy band gap. In order to achieve this goal they employed the chemical bath in such a way as to analyse the doping method to determine the most effective dosage resulting in good physical properties useful for a wide field of applications.

The experimental results indicate a successful doping for low indium dosages, a saturation for intermediate doping levels, and a degradation of the doping process for high impurity. Furthermore, they were able to produce the CdS films more efficiently with electronic testing results indicating that this n-type doping process is suitable for producing CdS photovoltaic solar cells.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com/

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>