Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor technology detects chemical, biological, nuclear and explosive materials

27.03.2006


Applications for homeland security, emergency planning



Engineers at the U.S. Department of Energy’s Argonne National Laboratory, using an emerging sensing technology, have developed a suite of sensors for national security applications that can quickly and effectively detect chemical, biological, nuclear and explosive materials.

"We can use this technology to detect chemical and biological agents and also to determine if a country is using its nuclear reactors to produce material for nuclear weapons or to track the direction of a chemical or radioactive plume to evacuate an area," explained Paul Raptis, section manager. Raptis is developing these sensors with Argonne engineers Sami Gopalsami, Sasan Bakhtiari and Hual-Te Chien.


Argonne engineers have successfully performed the first-ever remote detection of chemicals and identification of unique explosives spectra using a spectroscopic technique that uses the properties of the millimeter/terahertz frequencies between microwave and infrared on the electromagnetic spectrum. The researchers used this technique to detect spectral "fingerprints" that uniquely identify explosives and chemicals.

The Argonne-developed technology was demonstrated in tests that accomplished three important goals:

  • Detected and measured poison gas precursors 60 meters away in the Nevada Test Site to an accuracy of 10 parts per million using active sensing.
  • Identified chemicals related to defense applications, including nuclear weapons, from 600 meters away using passive sensing at the Nevada Test Site.
  • Built a system to identify the spectral fingerprints of trace levels of explosives, including DNT, TNT, PETN, RDX and plastics explosives semtex and C-4.

Current research involves collecting a database of explosive "fingerprints" and, working with partners Sarnoff Corp., Dartmouth College and Sandia National Laboratory, testing a mail- or cargo-screening system for trace explosives.

Argonne engineers have been exploring this emerging field for more than a decade to create remote technology to detect facilities that may be violating nonproliferation agreements by creating materials for nuclear weapons or making nerve agents.

How it works

The millimeter/terahertz technology detects the energy levels of a molecule as it rotates. The frequency distribution of this energy provides a unique and reproducible spectral pattern – its "fingerprint" – that identifies the material. The technology can also be used in its imaging modality – ranging from concealed weapons to medical applications such as tumor detection.

The technique is an improvement over laser or optical sensing, which can be perturbed by atmospheric conditions, or X-rays, which can cause damage by ionization. Operating at frequencies between 0.1 and 10 terahertz, the sensitivity is four to five orders of magnitude higher and imaging resolution is 100 to 300 times more than possible at microwave frequencies.

Other homeland security sensors

To remotely detect radiation from nuclear accidents or reactor operations, Argonne researchers are testing millimeter-wave radars and developing models to detect and interpret radiation-induced effects in air that cause radar reflection and scattering. Preliminary results of tests, in collaboration with AOZT Finn-Trade of St. Peterspurg, Russia, with instruments located 9 km from a nuclear power plant showed clear differences between when the plant was operating and when it was idling. This technology can also be applied to mapping plumes from nuclear radiation releases.

Argonne engineers have also applied this radar technology for remote and rapid imaging of gas leaks from natural gas pipelines. The technique detects the fluctuations in the index-of-refraction caused by leaking gas into surrounding air.

Early warnings of biological hazards can be made using another Argonne-developed sensing system that measures dielectric signatures. The systems sense repeatable dielectric response patterns from a number of biomolecules. The method holds potential for a fast first screening of chemical or biological agents in gases, powders or aerosols.

Other tests can detect these agents, but may take four hours or longer. "While this method may not be as precise as other methods, such as bioassays and biochips, it can be an early warning to start other tests sooner," said Raptis.

These Argonne sensor specialists will continue to probe the basics of sensor technology and continue to develop devices that protect the nation’s security interests.

Other potential applications for these technologies, in addition to security, include nondestructive evaluation of parts, environmental monitoring and health, including testing human tissue and replacing dental X-rays.

In addition to DOE, the U.S. Department of Defense and the National Aeronautics and Space Administration have provided support for this research.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is managed by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Catherine Foster (630/252-5580 or cfoster@anl.gov) at Argonne.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>