Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor technology detects chemical, biological, nuclear and explosive materials

27.03.2006


Applications for homeland security, emergency planning



Engineers at the U.S. Department of Energy’s Argonne National Laboratory, using an emerging sensing technology, have developed a suite of sensors for national security applications that can quickly and effectively detect chemical, biological, nuclear and explosive materials.

"We can use this technology to detect chemical and biological agents and also to determine if a country is using its nuclear reactors to produce material for nuclear weapons or to track the direction of a chemical or radioactive plume to evacuate an area," explained Paul Raptis, section manager. Raptis is developing these sensors with Argonne engineers Sami Gopalsami, Sasan Bakhtiari and Hual-Te Chien.


Argonne engineers have successfully performed the first-ever remote detection of chemicals and identification of unique explosives spectra using a spectroscopic technique that uses the properties of the millimeter/terahertz frequencies between microwave and infrared on the electromagnetic spectrum. The researchers used this technique to detect spectral "fingerprints" that uniquely identify explosives and chemicals.

The Argonne-developed technology was demonstrated in tests that accomplished three important goals:

  • Detected and measured poison gas precursors 60 meters away in the Nevada Test Site to an accuracy of 10 parts per million using active sensing.
  • Identified chemicals related to defense applications, including nuclear weapons, from 600 meters away using passive sensing at the Nevada Test Site.
  • Built a system to identify the spectral fingerprints of trace levels of explosives, including DNT, TNT, PETN, RDX and plastics explosives semtex and C-4.

Current research involves collecting a database of explosive "fingerprints" and, working with partners Sarnoff Corp., Dartmouth College and Sandia National Laboratory, testing a mail- or cargo-screening system for trace explosives.

Argonne engineers have been exploring this emerging field for more than a decade to create remote technology to detect facilities that may be violating nonproliferation agreements by creating materials for nuclear weapons or making nerve agents.

How it works

The millimeter/terahertz technology detects the energy levels of a molecule as it rotates. The frequency distribution of this energy provides a unique and reproducible spectral pattern – its "fingerprint" – that identifies the material. The technology can also be used in its imaging modality – ranging from concealed weapons to medical applications such as tumor detection.

The technique is an improvement over laser or optical sensing, which can be perturbed by atmospheric conditions, or X-rays, which can cause damage by ionization. Operating at frequencies between 0.1 and 10 terahertz, the sensitivity is four to five orders of magnitude higher and imaging resolution is 100 to 300 times more than possible at microwave frequencies.

Other homeland security sensors

To remotely detect radiation from nuclear accidents or reactor operations, Argonne researchers are testing millimeter-wave radars and developing models to detect and interpret radiation-induced effects in air that cause radar reflection and scattering. Preliminary results of tests, in collaboration with AOZT Finn-Trade of St. Peterspurg, Russia, with instruments located 9 km from a nuclear power plant showed clear differences between when the plant was operating and when it was idling. This technology can also be applied to mapping plumes from nuclear radiation releases.

Argonne engineers have also applied this radar technology for remote and rapid imaging of gas leaks from natural gas pipelines. The technique detects the fluctuations in the index-of-refraction caused by leaking gas into surrounding air.

Early warnings of biological hazards can be made using another Argonne-developed sensing system that measures dielectric signatures. The systems sense repeatable dielectric response patterns from a number of biomolecules. The method holds potential for a fast first screening of chemical or biological agents in gases, powders or aerosols.

Other tests can detect these agents, but may take four hours or longer. "While this method may not be as precise as other methods, such as bioassays and biochips, it can be an early warning to start other tests sooner," said Raptis.

These Argonne sensor specialists will continue to probe the basics of sensor technology and continue to develop devices that protect the nation’s security interests.

Other potential applications for these technologies, in addition to security, include nondestructive evaluation of parts, environmental monitoring and health, including testing human tissue and replacing dental X-rays.

In addition to DOE, the U.S. Department of Defense and the National Aeronautics and Space Administration have provided support for this research.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is managed by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Catherine Foster (630/252-5580 or cfoster@anl.gov) at Argonne.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>