Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wrinkle in the mystery of high-Tc superconductors

17.03.2006


In the twenty years since the discovery of high-temperature (Tc) superconductors, scientists have been trying to understand the mechanism by which electrons pair up and move coherently to carry electrical current with no resistance. "We are still at the beginning," says Tonica Valla, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory, who will give a talk on his group’s latest results at the American Physical Society meeting in Baltimore, Maryland on Thursday, March 16, 2006. "If anything," he adds, "it looks like the story is getting more complicated."


In 1999, Valla’s group was the first to observe a "kink" in the energy level of electrons in high-Tc superconductors just as they went through the transition temperature from their normal to superconducting state. The kink was the first clue to explaining what the mechanism of electron pairing might be.

"The kink gave us the hope that we could identify the interaction that was responsible for the electron pairing," said Valla. Some groups hold that the mechanism is the same as in conventional superconductors -- that is, that phonons, or vibrations in the crystal lattice, are responsible for electron pairing. Other scientists believe that changes in the spin alignment, or magnetic polarity, of adjacent electrons -- known as magnons -- are responsible. "The problem is that there are both phonons and magnons in the crystal with the energy where we see the kink, so it is still not clear," Valla says.

The latest wrinkle uncovered by Valla’s group is the observation of similar energy scales and gaps in a material that is not a superconductor. The material is a special form of a compound made of lanthanum, barium, copper, and oxygen, where there is exactly one barium atom for every eight copper atoms. With less or more barium, the material acts as a high-Tc superconductor (in fact, this was the very first high-Tc superconductor discovered). But at the 1:8 ratio, the material momentarily loses its superconductivity.



"The fact that this system, which is not a superconductor, has similar properties to the superconducting system is not helping to solve the mystery," Valla says. But then he notes that 20 years since the discovery of high-Tc superconductors is still not that long. "For conventional superconductors," he says, "it took about 50 years to come up with a good explanation for the behavior."

Valla’s talk is part of a session on the use of angle-resolved photoemission spectroscopy in the study of high-Tc superconductors. It will include a discussion of advances in this technique. His group uses bright beams of ultraviolet light at the National Synchrotron Light Source, one of Brookhaven Lab’s premiere research facilities, to emit electrons from the samples they are studying. Using high-resolution spectrometers, the scientists measure the energy and the angle at which the electrons exit the crystal, allowing them to reconstruct the electrons’ state while in the crystal -- their energy level and whether they had any interactions with phonons/magnons.

The talk will take place on Thursday, March 16, 2006 at 3:06 p.m. in Ballroom IV of the Baltimore Convention Center.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht High-precision magnetic field sensing
05.12.2016 | ETH Zurich

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>