Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wrinkle in the mystery of high-Tc superconductors

17.03.2006


In the twenty years since the discovery of high-temperature (Tc) superconductors, scientists have been trying to understand the mechanism by which electrons pair up and move coherently to carry electrical current with no resistance. "We are still at the beginning," says Tonica Valla, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory, who will give a talk on his group’s latest results at the American Physical Society meeting in Baltimore, Maryland on Thursday, March 16, 2006. "If anything," he adds, "it looks like the story is getting more complicated."


In 1999, Valla’s group was the first to observe a "kink" in the energy level of electrons in high-Tc superconductors just as they went through the transition temperature from their normal to superconducting state. The kink was the first clue to explaining what the mechanism of electron pairing might be.

"The kink gave us the hope that we could identify the interaction that was responsible for the electron pairing," said Valla. Some groups hold that the mechanism is the same as in conventional superconductors -- that is, that phonons, or vibrations in the crystal lattice, are responsible for electron pairing. Other scientists believe that changes in the spin alignment, or magnetic polarity, of adjacent electrons -- known as magnons -- are responsible. "The problem is that there are both phonons and magnons in the crystal with the energy where we see the kink, so it is still not clear," Valla says.

The latest wrinkle uncovered by Valla’s group is the observation of similar energy scales and gaps in a material that is not a superconductor. The material is a special form of a compound made of lanthanum, barium, copper, and oxygen, where there is exactly one barium atom for every eight copper atoms. With less or more barium, the material acts as a high-Tc superconductor (in fact, this was the very first high-Tc superconductor discovered). But at the 1:8 ratio, the material momentarily loses its superconductivity.



"The fact that this system, which is not a superconductor, has similar properties to the superconducting system is not helping to solve the mystery," Valla says. But then he notes that 20 years since the discovery of high-Tc superconductors is still not that long. "For conventional superconductors," he says, "it took about 50 years to come up with a good explanation for the behavior."

Valla’s talk is part of a session on the use of angle-resolved photoemission spectroscopy in the study of high-Tc superconductors. It will include a discussion of advances in this technique. His group uses bright beams of ultraviolet light at the National Synchrotron Light Source, one of Brookhaven Lab’s premiere research facilities, to emit electrons from the samples they are studying. Using high-resolution spectrometers, the scientists measure the energy and the angle at which the electrons exit the crystal, allowing them to reconstruct the electrons’ state while in the crystal -- their energy level and whether they had any interactions with phonons/magnons.

The talk will take place on Thursday, March 16, 2006 at 3:06 p.m. in Ballroom IV of the Baltimore Convention Center.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>