Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quickplacer, the fastest robot in the world

15.03.2006


Fatronik has launched the most rapid robot in the world at the BIEMH (International Machine-Tool Biennial) in Bilbao.



What is involved here is a high-performance handling robot the structure of which is basically four actuators working in a co-ordinated manner with the goal of achieving maximum dynamic performances.

The robot has four degrees of freedom, displacements along three translations and rotates on its vertical axis. It is a cylinder with a diameter of 1200mm and a height of 250mm. Its rotational capacity covers ±200º, which enables positioning an object in any orientation-position.


This robot is characterised by its high dynamics, with accelerations of 15G, enabling it to pick up and position over 200 items per minute. Its workload capacity is aimed at the manipulation of variously shaped objects up to a weight of 2 Kg.

This robot is aided by a vision system capable of guiding its movements. The vision system, available in both black and white and in colour, is responsible for locating the shape and the orientation-position of the objects and, as a function of the received programming, gives orders for the robots movements. It is also possible to co-ordinate the whole system with moving belts in such a way that the robot can pick up a moving object and also position it on a moving belt.

Novelty

The Quickplacer robot is the most rapid in the world. Its high acceleration and braking capacity, 5 times more than that of a Formula 1 racing car, makes it world leader in production capacity.

It special structure and the characteristics of the elements make its speed and acceleration optimum, increasing productivity by 20% with respect to currently existing solutions.

Application

The technological structure and capacities of this robot make it ideal for handling tasks in a multitude of sectors such as in food and agriculture, the hygiene sector, beauty care, health care or electronic components.

Its design is optimised for small-sized objects – up to 2 Kg – in very varied tasks. The possible tasks to which this robot can be applied are as varied as the following:

• Positioning of chocolates in individually-shaped places
• Packaging of bars of chocolate/turron
• Packaging of biscuits individually or in groups
• Quality control in the processing of vegetables (combined with a colour vision system)
• Packaging of peppers
• Packaging of lipstick bars
• Packaging of baby towelettes
• Feeding various products (fish, meat, CDs,…) to flowpack machines.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=919

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>