Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


GA Tech develops ultra-efficient embedded architectures based on probabilistic technology


Probabilistic system on chip technology reduces energy consumption by a factor of more than 500 for some applications

Researchers at the Georgia Institute of Technology announce energy savings by a factor of more than 500 in simulations with their ultra energy efficient embedded architecture based on Probabilistic CMOS (PCMOS). The research team’s PCMOS devices take advantage of noise, currently fabricated at the quarter-micron (0.25 micron) level, and uses probability to extract great energy savings. The findings will be presented at the Design, Automation and Test In Europe (DATE) Conference, the leading peer-reviewed European electronic systems design meeting, on March 9 in Munich, Germany.

The research team led by Dr. Krishna Palem, a joint professor in the Georgia Tech College of Computing and the School of Electrical and Computer Engineering and founding director of the Center for Research in Embedded Systems & Technology, has confirmed that architectural and application gains to be reported at DATE are as high as a factor of 560 when compared to comparable CMOS based architectures. As traditional CMOS semiconductor technology approaches the nanoscale, coping with noise and energy savings are increasingly important. PCMOS harnesses the inherent instability of noise and uses it as a resource to achieve energy efficient architectures. In the architectures, noise induces distortion in the application. However, given the human ability to average this routinely such as in voice when using cell phones, or in images when they are streamed to hand held devices, the user does not often notice the distortion as significant and is willing to pay the price for significant energy savings. A demonstration showing this effect in the context of video decompression used in modern DVD images is available for viewing at

"Probabilistic architectures extend PCMOS to computing substrates beyond devices," says Palem. "By mixing chip measurements and simulations, gains have been shown using this technology for such applications as Hyper-encryption as applied to computer security, and through cognitive applications such as speech recognition and pattern recognition as well as image decompression. The gains ranged from a factor of 10 to a factor of more than 500 over conventional architectural approaches."

Beyond such architectural objectives, when applications need random sources, historically pseudo-random numbers generators were used. The Georgia Tech research team used the National Institute of Standards and Technology (NIST) recommended tests to quantify and measure the quality of randomness of PCMOS within this limited context of being viewed as a source of random bits, beyond complete Probabilistic System on Chip (PSoC) architectures. PCMOS outperformed CMOS in the quality of random sequences generated.

Next Steps
The research team will work on developing PSoC architectures to be fabricated using devices of 180 nanometers, for specific applications with an embedded flavor such as video, and audio signal processing (DSP). Palem estimates this will take nine months to validate. The technical paper being presented at DATE is available at

Elizabeth Campell | EurekAlert!
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>