Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GA Tech develops ultra-efficient embedded architectures based on probabilistic technology

13.03.2006


Probabilistic system on chip technology reduces energy consumption by a factor of more than 500 for some applications

Researchers at the Georgia Institute of Technology announce energy savings by a factor of more than 500 in simulations with their ultra energy efficient embedded architecture based on Probabilistic CMOS (PCMOS). The research team’s PCMOS devices take advantage of noise, currently fabricated at the quarter-micron (0.25 micron) level, and uses probability to extract great energy savings. The findings will be presented at the Design, Automation and Test In Europe (DATE) Conference, the leading peer-reviewed European electronic systems design meeting, on March 9 in Munich, Germany.

The research team led by Dr. Krishna Palem, a joint professor in the Georgia Tech College of Computing and the School of Electrical and Computer Engineering and founding director of the Center for Research in Embedded Systems & Technology, has confirmed that architectural and application gains to be reported at DATE are as high as a factor of 560 when compared to comparable CMOS based architectures. As traditional CMOS semiconductor technology approaches the nanoscale, coping with noise and energy savings are increasingly important. PCMOS harnesses the inherent instability of noise and uses it as a resource to achieve energy efficient architectures. In the architectures, noise induces distortion in the application. However, given the human ability to average this routinely such as in voice when using cell phones, or in images when they are streamed to hand held devices, the user does not often notice the distortion as significant and is willing to pay the price for significant energy savings. A demonstration showing this effect in the context of video decompression used in modern DVD images is available for viewing at http://www.crest.gatech.edu/palempbitscurrent/demo.html



"Probabilistic architectures extend PCMOS to computing substrates beyond devices," says Palem. "By mixing chip measurements and simulations, gains have been shown using this technology for such applications as Hyper-encryption as applied to computer security, and through cognitive applications such as speech recognition and pattern recognition as well as image decompression. The gains ranged from a factor of 10 to a factor of more than 500 over conventional architectural approaches."

Beyond such architectural objectives, when applications need random sources, historically pseudo-random numbers generators were used. The Georgia Tech research team used the National Institute of Standards and Technology (NIST) recommended tests to quantify and measure the quality of randomness of PCMOS within this limited context of being viewed as a source of random bits, beyond complete Probabilistic System on Chip (PSoC) architectures. PCMOS outperformed CMOS in the quality of random sequences generated.

Next Steps
The research team will work on developing PSoC architectures to be fabricated using devices of 180 nanometers, for specific applications with an embedded flavor such as video, and audio signal processing (DSP). Palem estimates this will take nine months to validate. The technical paper being presented at DATE is available at http://www.crest.gatech.edu/palempbitscurrent/date2006.pdf.

Elizabeth Campell | EurekAlert!
Further information:
http://www.crest.gatech.edu/palempbitscurrent/date2006.pdf
http://www.crest.gatech.edu/palempbitscurrent/demo.html

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>