Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GA Tech develops ultra-efficient embedded architectures based on probabilistic technology

13.03.2006


Probabilistic system on chip technology reduces energy consumption by a factor of more than 500 for some applications

Researchers at the Georgia Institute of Technology announce energy savings by a factor of more than 500 in simulations with their ultra energy efficient embedded architecture based on Probabilistic CMOS (PCMOS). The research team’s PCMOS devices take advantage of noise, currently fabricated at the quarter-micron (0.25 micron) level, and uses probability to extract great energy savings. The findings will be presented at the Design, Automation and Test In Europe (DATE) Conference, the leading peer-reviewed European electronic systems design meeting, on March 9 in Munich, Germany.

The research team led by Dr. Krishna Palem, a joint professor in the Georgia Tech College of Computing and the School of Electrical and Computer Engineering and founding director of the Center for Research in Embedded Systems & Technology, has confirmed that architectural and application gains to be reported at DATE are as high as a factor of 560 when compared to comparable CMOS based architectures. As traditional CMOS semiconductor technology approaches the nanoscale, coping with noise and energy savings are increasingly important. PCMOS harnesses the inherent instability of noise and uses it as a resource to achieve energy efficient architectures. In the architectures, noise induces distortion in the application. However, given the human ability to average this routinely such as in voice when using cell phones, or in images when they are streamed to hand held devices, the user does not often notice the distortion as significant and is willing to pay the price for significant energy savings. A demonstration showing this effect in the context of video decompression used in modern DVD images is available for viewing at http://www.crest.gatech.edu/palempbitscurrent/demo.html



"Probabilistic architectures extend PCMOS to computing substrates beyond devices," says Palem. "By mixing chip measurements and simulations, gains have been shown using this technology for such applications as Hyper-encryption as applied to computer security, and through cognitive applications such as speech recognition and pattern recognition as well as image decompression. The gains ranged from a factor of 10 to a factor of more than 500 over conventional architectural approaches."

Beyond such architectural objectives, when applications need random sources, historically pseudo-random numbers generators were used. The Georgia Tech research team used the National Institute of Standards and Technology (NIST) recommended tests to quantify and measure the quality of randomness of PCMOS within this limited context of being viewed as a source of random bits, beyond complete Probabilistic System on Chip (PSoC) architectures. PCMOS outperformed CMOS in the quality of random sequences generated.

Next Steps
The research team will work on developing PSoC architectures to be fabricated using devices of 180 nanometers, for specific applications with an embedded flavor such as video, and audio signal processing (DSP). Palem estimates this will take nine months to validate. The technical paper being presented at DATE is available at http://www.crest.gatech.edu/palempbitscurrent/date2006.pdf.

Elizabeth Campell | EurekAlert!
Further information:
http://www.crest.gatech.edu/palempbitscurrent/date2006.pdf
http://www.crest.gatech.edu/palempbitscurrent/demo.html

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>