Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GA Tech develops ultra-efficient embedded architectures based on probabilistic technology

13.03.2006


Probabilistic system on chip technology reduces energy consumption by a factor of more than 500 for some applications

Researchers at the Georgia Institute of Technology announce energy savings by a factor of more than 500 in simulations with their ultra energy efficient embedded architecture based on Probabilistic CMOS (PCMOS). The research team’s PCMOS devices take advantage of noise, currently fabricated at the quarter-micron (0.25 micron) level, and uses probability to extract great energy savings. The findings will be presented at the Design, Automation and Test In Europe (DATE) Conference, the leading peer-reviewed European electronic systems design meeting, on March 9 in Munich, Germany.

The research team led by Dr. Krishna Palem, a joint professor in the Georgia Tech College of Computing and the School of Electrical and Computer Engineering and founding director of the Center for Research in Embedded Systems & Technology, has confirmed that architectural and application gains to be reported at DATE are as high as a factor of 560 when compared to comparable CMOS based architectures. As traditional CMOS semiconductor technology approaches the nanoscale, coping with noise and energy savings are increasingly important. PCMOS harnesses the inherent instability of noise and uses it as a resource to achieve energy efficient architectures. In the architectures, noise induces distortion in the application. However, given the human ability to average this routinely such as in voice when using cell phones, or in images when they are streamed to hand held devices, the user does not often notice the distortion as significant and is willing to pay the price for significant energy savings. A demonstration showing this effect in the context of video decompression used in modern DVD images is available for viewing at http://www.crest.gatech.edu/palempbitscurrent/demo.html



"Probabilistic architectures extend PCMOS to computing substrates beyond devices," says Palem. "By mixing chip measurements and simulations, gains have been shown using this technology for such applications as Hyper-encryption as applied to computer security, and through cognitive applications such as speech recognition and pattern recognition as well as image decompression. The gains ranged from a factor of 10 to a factor of more than 500 over conventional architectural approaches."

Beyond such architectural objectives, when applications need random sources, historically pseudo-random numbers generators were used. The Georgia Tech research team used the National Institute of Standards and Technology (NIST) recommended tests to quantify and measure the quality of randomness of PCMOS within this limited context of being viewed as a source of random bits, beyond complete Probabilistic System on Chip (PSoC) architectures. PCMOS outperformed CMOS in the quality of random sequences generated.

Next Steps
The research team will work on developing PSoC architectures to be fabricated using devices of 180 nanometers, for specific applications with an embedded flavor such as video, and audio signal processing (DSP). Palem estimates this will take nine months to validate. The technical paper being presented at DATE is available at http://www.crest.gatech.edu/palempbitscurrent/date2006.pdf.

Elizabeth Campell | EurekAlert!
Further information:
http://www.crest.gatech.edu/palempbitscurrent/date2006.pdf
http://www.crest.gatech.edu/palempbitscurrent/demo.html

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>