Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen Accumulation

07.03.2006


The hydrogen storage devices developed and patented by the scientists of the Academy of Advanced Technologies (Moscow) break all records. These are hydrogen accumulators based on microporous structures, first of all - microspheres and capillaries. Despite seeming elegance and fragility of its “filling”, the device strongly and safely retains a lot of hydrogen in a small volume. A lot of hydrogen means more than 45 grams per litre. By the way, this figure is planned by the US Department of Energy only for 2010.



These accumulators’ principle of operation was described by the author A. Chabak, Doctor of Science (Engineering) at the recent international forum “Hydrogen Technologies for Power Generation” in Moscow. Speaking simplistically, these devices operate as follows.

The covering balloon is filled with some microporous structure. These can be glass microspheres or thin capillaries made of special lightweight and durable plastics, for example, of polymers based on poly-p-phenyleneterephthalamide, better known as aramid, terlon, kevlar.


Microspheres and capillaries are hollow inside, and on the outside, they are fastened to each other with the help of a current conducting material. This can be metal, graphite or conductive adhesive.

First, the balloon and its content are heated rather heavily and filled with hydrogen under pressure. Hydrogen is penetrating through glass and plastic walls inside spheres and capillaries, filling them up. Then the device is cooled off, and the precious gas remains in the cold trap – spherules or capillaries. Of course, part of hydrogen also remains inside the balloon, in the space between microspheres.

Now, to obtain hydrogen, these microcontainers should simply be heated. To this end, it is sufficient to pass current through the material fastening capillaries or spherules. Along with that, the entire microstructure would get warm, and hydrogen will be able to “leak” outside the microcontainers. First, it would leak into the internal space of the balloon, and from it – directly to the engine. As a result, such accumulator allows at any time to feed hydrogen from a peculiar buffer capacity – space between microspheres. Heating allows to “feed” into this capacity if required. Other technologies of hydrogen filling and extracting from microcontainers are also being developed.

According to the authors, such accumulator cartridges can be installed, for example, into containers of 20x20 centimeters in size and 1 meter long, 16 pieces per each container. Three containers of this kind would find room for 4.3 to 6.35 kilograms of hydrogen. It is quite safe to keep hydrogen in these containers. In contrast to balloons, where all of the gas is stored in a single common volume (and if it explodes – all of it would blow up at once), in this case, hydrogen is distributed among multiple smallest volumes, and the explosion, at least a powerful one, is practically excluded. This is of no small importance, particularly, in case of hydrogen.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>