Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen Accumulation

07.03.2006


The hydrogen storage devices developed and patented by the scientists of the Academy of Advanced Technologies (Moscow) break all records. These are hydrogen accumulators based on microporous structures, first of all - microspheres and capillaries. Despite seeming elegance and fragility of its “filling”, the device strongly and safely retains a lot of hydrogen in a small volume. A lot of hydrogen means more than 45 grams per litre. By the way, this figure is planned by the US Department of Energy only for 2010.



These accumulators’ principle of operation was described by the author A. Chabak, Doctor of Science (Engineering) at the recent international forum “Hydrogen Technologies for Power Generation” in Moscow. Speaking simplistically, these devices operate as follows.

The covering balloon is filled with some microporous structure. These can be glass microspheres or thin capillaries made of special lightweight and durable plastics, for example, of polymers based on poly-p-phenyleneterephthalamide, better known as aramid, terlon, kevlar.


Microspheres and capillaries are hollow inside, and on the outside, they are fastened to each other with the help of a current conducting material. This can be metal, graphite or conductive adhesive.

First, the balloon and its content are heated rather heavily and filled with hydrogen under pressure. Hydrogen is penetrating through glass and plastic walls inside spheres and capillaries, filling them up. Then the device is cooled off, and the precious gas remains in the cold trap – spherules or capillaries. Of course, part of hydrogen also remains inside the balloon, in the space between microspheres.

Now, to obtain hydrogen, these microcontainers should simply be heated. To this end, it is sufficient to pass current through the material fastening capillaries or spherules. Along with that, the entire microstructure would get warm, and hydrogen will be able to “leak” outside the microcontainers. First, it would leak into the internal space of the balloon, and from it – directly to the engine. As a result, such accumulator allows at any time to feed hydrogen from a peculiar buffer capacity – space between microspheres. Heating allows to “feed” into this capacity if required. Other technologies of hydrogen filling and extracting from microcontainers are also being developed.

According to the authors, such accumulator cartridges can be installed, for example, into containers of 20x20 centimeters in size and 1 meter long, 16 pieces per each container. Three containers of this kind would find room for 4.3 to 6.35 kilograms of hydrogen. It is quite safe to keep hydrogen in these containers. In contrast to balloons, where all of the gas is stored in a single common volume (and if it explodes – all of it would blow up at once), in this case, hydrogen is distributed among multiple smallest volumes, and the explosion, at least a powerful one, is practically excluded. This is of no small importance, particularly, in case of hydrogen.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>