Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester develops wireless ‘wear and tear’ sensor

23.02.2006


Sensors which are able to predict when mechanical parts in machinery and transport will breakdown before they actually do could be introduced by 2010, slashing maintenance costs across the manufacturing, automotive and plant machinery industries.



Scientists at The University of Manchester are to develop a new type of wireless sensor which will be able to remotely monitor mechanical parts and systems. The aim is to produce a sensor which can be seamlessly fitted inside gearboxes, motors, diesel engines, wheel bearings and door mechanisms, in which faults can occur.

Once fitted, the sensors would enable the ‘health’ of the parts to be remotely monitored by computers which would then use the data to predict when parts require maintenance or need replacing - before they fail.


Dr Andrew Starr, who will lead the Manchester side of the Europe-wide project, said: “By monitoring the condition of major parts we will be able to predict when they require maintenance and when they need replacing before they fail. This will dramatically reduce the delay and cost caused by impromptu break downs, and we hope it will also lead to a much more efficient service for customers.

He added: “In theory, we could get breakdowns down to zero with this technology.”

Manchester will develop a multi-measureand MEMS sensor which will measure a range of selected parameters (e.g. vibration, temperature, pressure) for condition monitoring applications. Another application will be inside lubricated machinery. In this instance, sensors would measure concentrations of metallic elements created through ‘wear and tear’ from which the life-span of the part could be calculated.

The sensor will be developed as part of a £4.1m initiative funded by the European Union under Framework 6, known as DYNAMITE (Dynamic Decisions in Maintenance), aimed at advancing the capabilities of European industry in the field of e-maintenance and condition monitoring. The project will focus on applications in plant machinery, manufacturing and transport.

The aim of DYNAMITE is to deliver a blend of leading-edge communications and sensor technologies to create a prototype system for the European market. The system is planned for completion in 2008.

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>