Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SensorNet prototype system in boot camp at Fort Bragg

17.02.2006


Fort Bragg could be the model for the nation when it comes to protecting the public through a network that integrates a 911 dispatch system with sensors, alarms and video surveillance.



Oak Ridge National Laboratory’s SensorNet, a collection of systems for the detection, identification and assessment of chemical, biological, radiological and nuclear threats, has been installed as part of a project with the Fort Bragg Directorate of Emergency Services. The military base, located in North Carolina, is home to more than 30,000 family members and contains 11 shopping centers, 28 restaurants, a major medical center, 11 churches and 183 recreational facilities.

"Fort Bragg is a city with thousands of residents, more than 20 million square feet of office buildings and all of the associated needs and demands placed on emergency services workers," said Bryan Gorman, a researcher in the Department of Energy laboratory’s Computational Sciences and Engineering Division. "The beauty of SensorNet is that, unlike conventional public safety mass notification networks, it provides plug-and-play sensors and applications invisible to the users."


The end product is a system of sensors that could save lives in the event of a chemical, biological, radiological or nuclear attack. SensorNet requires no complicated computer programming and sends information in real time to command centers or emergency responder dispatchers. The system also incorporates actual meteorological conditions to produce predictions of health effects on the ambient population. Where ease of operation is concerned, Gorman compares SensorNet to the global Internet or phone system.

"Any sensor can talk to any application," Gorman said. "Just like with the Internet or with telephone systems, it doesn’t matter what kind of computer or telephone you have, where you are or what application you’re running. The system just works."

One of the main objectives at Fort Bragg will be to assess and evaluate chemical, biological, radiological and nuclear sensors along with meteorological sensors, intrusion detectors and access control technologies. The access control units are intended to protect military bases and other installations. Ultimately, sensors that emerge as the best in class will be incorporated in SensorNet installations around the country.

The work at Fort Bragg addresses a public safety initiative to consolidate its 911 dispatch system and to integrate all of the base’s sensor, alarm and video surveillance systems. With the SensorNet system in place, a dispatcher can provide first responders with better information that could ultimately save lives.

Another key component of the Fort Bragg project is to define standards for the Department of Defense’s "Net-Centric" strategy.

"’Network Centricity’ is the new Department of Defense vision for managing the department’s data," Gorman said. "In a ’net-centric’ environment, data is visible, accessible, understandable and trusted when needed and where needed to speed decision making."

The assessments are being conducted within the Bragg Experimental SensorNet Testbed, which is modeled after the Joint Forces Command’s Project Alpha. The project, funded by the Department of Defense, is scheduled to last five years.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>