Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Much Hot Water As Your Need Or The Sun In Trap

14.02.2006


A unique solar collector was developed by specialists of the Moscow “ALTEN” company under the guidance of Boris Kazandzhan, Professor, Doctor of Science (Engineering), Moscow Power Engineering Institute. Originality of the novelty lies in its extremely high efficiency. The collector not only manages to entrap the heat of solar beams falling on its surface, but also to utilize it to a great extent for direct purpose – for water heating.



Evidently, the idea of water heating in sunlight is not at all new. Water barrels painted black are installed on self-made showers perhaps at every country plots, allowing their owners to take a warm shower in summer. Alas, even in the hottest day, the temperature in the barrel is not too high, and there is no means for warming the house by radiators with the water heated in such an old-fashioned way.

The problem is that it is very difficult to catch solar energy and then to retain it. Habitual objects: a water barrel or a bench at the sunny side near the pond in the park do catch visible light energy and become warm – and immediately give a major part of this energy back into the ambient space, mainly in the form of infra-red radiation and convection.


To increase efficiency of absorption of solar energy and to reduce loss of heat, a special selective multi-layer coating based on titanium carbide is used. On the outside, it is dark as it should be to absorb light well. But its peculiarity is that having become warm, the coating almost does not radiate thermal energy. Thus, the coating allows to entrap solar energy in the visible and near infra-red spectral region where more than 90 percent of solar energy is concentrated, and almost not to irradiate energy into the spectral regions corresponding to radiation of heat. The heat entrapped in such a way is collected by water that flows along copper tubes embedded into aluminium shapes covered by a selective coating and forming a so-called absorber. Instead of water, however, some other heat carrier may be used, but water is the cheapest of all.

To protect the reserved heat from being blown away by wind, in other words – to reduce loss of heat into the environment due to convection, the absorbers are inserted into special plastic casings. The casings are made of polycarbonate, which is not solid but cellular. The cells are hollow, that is why the air inside them is motionless, thus allowing to preserve the heat of water warmed by the Sun no worse than a good down-bed does. As for polycarbonate, it passes the light through very well, it does not get warm and does not cast shadow, so it does not impede the work.

As a result, during a sunny day, one collector of 2 square meters in area can heat approximately 150 liters of water up to the temperature of 60 to 70 degrees C. If necessary, water can be heated up to the boiling point. Several collectors can provide for hot water-supply and heating of a small cottage. Evidently, in the moderate climate, for instance, in the Moscow Region, it makes sense only during the “long” summer season since early spring till late autumn. In wintertime, one cannot survive only on solar heat, be the efficiency of such system even one hundred percent. However, in the mild European climate the system would serve all year round, to say nothing about warm areas. In near future, the first house with such heating will appear in the town of Sochi. Its front will be decorated with the ALTEN solar collector boards. The house will be provided with hot water the whole year round.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>