Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titania nanotubes create potentially efficient solar cells

09.02.2006


A solar cell, made of titania nanotubes and natural dye, may be the answer to making solar electricity production cost-effective, according to a Penn State researcher.



"Solar cell technology has not changed very much over time and is still predominantly silicon solar cells," says Dr. Craig Grimes, professor of electrical engineering and materials science and engineering. "It takes a great deal of energy, 5 gigajoules per square meter, to make silicon solar cells. It can be argued that silicon solar cells never fully recover the energy it takes to make them in the first place."

The new focus in solar cells is toward dye sensitive solar cells, which have been made using nanoparticles and a variety of dyes.


"Nanoparticle solar cells are the gold standard of this new approach," says Grimes. "However, because of limitations, it appears they have gotten as good as they are going to get."

The researchers are instead looking at titania nanotubes to replace the particulate coatings in dye sensitive solar cells and, their initial attempt produced about 3 percent conversion of solar energy to electricity, they report in today’s issue of Nano Letters. The researcher’s inability to grow longer titania nanotubes, constrained the solar conversion rate.

"I think we can reach a 15 percent conversion rate with these cells, and other researchers do as well," says Grimes. "That is 15 percent with a relatively easy fabrication system that is commercially viable."

Conventional solar cells are made from blocks of slowly made silicon boules that are sliced into wafers. Grimes and his team use an easier approach. They coat a piece of glass with a fluorine-doped tin oxide and then sputter on a layer of titanium. The researchers can currently lay down a 500-nanometer thick titanium layer. They then anodize the layer by placing it in an acidic bath with a mild electric current and titanium dioxide nanotube arrays grow to about 360 nanometers. The tubes are then heated in oxygen so that they crystalize. The process turns the opaque coating of titanium into a transparent coating of nanotubes.

This nanotube array is then coated in a commercially available dye. The dye-coated nanotubes make up the negative electrode and a positive electrode seals the cell which contains an iodized electrolyte. When sun shines through the glass, the energy falls on the dye molecules and an electron is freed. If this electron and others make their way out of the tube to the negative electrode, a current flows. Many electrons do not and are recombined, but the tube structure of the titanium dioxide allows an order of magnitude more electrons to make it to the electrode than with particulate coatings.

"There is still a great deal of optimization of the design that needs to be done," says Grimes. "Now, with the help of the Pennsylvania Energy Development Authority, we will have equipment to make high quality titanium coatings that are thicker. If we get about 3 percent conversion with 360 nanometers, what we could get with 4 microns is an exciting question we soon hope to answer."

The thickness of the titanium layer constrains the height of the nanotubes. With thicker initial coatings, longer tubes would produce more electrons that do not recombine, producing more electricity.

Other aspects of the titania nanotube dye sensitive solar cells that need to be optimized include the thickness of the cells. Currently, spacers separate the two layers and provide internal support. These spacers are 25 microns thick. If the spacers could be made as sturdy, but shorter, there would be less of a distance for the electrons to travel and more electrons will make it across the electrodes.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>