Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titania nanotubes create potentially efficient solar cells

09.02.2006


A solar cell, made of titania nanotubes and natural dye, may be the answer to making solar electricity production cost-effective, according to a Penn State researcher.



"Solar cell technology has not changed very much over time and is still predominantly silicon solar cells," says Dr. Craig Grimes, professor of electrical engineering and materials science and engineering. "It takes a great deal of energy, 5 gigajoules per square meter, to make silicon solar cells. It can be argued that silicon solar cells never fully recover the energy it takes to make them in the first place."

The new focus in solar cells is toward dye sensitive solar cells, which have been made using nanoparticles and a variety of dyes.


"Nanoparticle solar cells are the gold standard of this new approach," says Grimes. "However, because of limitations, it appears they have gotten as good as they are going to get."

The researchers are instead looking at titania nanotubes to replace the particulate coatings in dye sensitive solar cells and, their initial attempt produced about 3 percent conversion of solar energy to electricity, they report in today’s issue of Nano Letters. The researcher’s inability to grow longer titania nanotubes, constrained the solar conversion rate.

"I think we can reach a 15 percent conversion rate with these cells, and other researchers do as well," says Grimes. "That is 15 percent with a relatively easy fabrication system that is commercially viable."

Conventional solar cells are made from blocks of slowly made silicon boules that are sliced into wafers. Grimes and his team use an easier approach. They coat a piece of glass with a fluorine-doped tin oxide and then sputter on a layer of titanium. The researchers can currently lay down a 500-nanometer thick titanium layer. They then anodize the layer by placing it in an acidic bath with a mild electric current and titanium dioxide nanotube arrays grow to about 360 nanometers. The tubes are then heated in oxygen so that they crystalize. The process turns the opaque coating of titanium into a transparent coating of nanotubes.

This nanotube array is then coated in a commercially available dye. The dye-coated nanotubes make up the negative electrode and a positive electrode seals the cell which contains an iodized electrolyte. When sun shines through the glass, the energy falls on the dye molecules and an electron is freed. If this electron and others make their way out of the tube to the negative electrode, a current flows. Many electrons do not and are recombined, but the tube structure of the titanium dioxide allows an order of magnitude more electrons to make it to the electrode than with particulate coatings.

"There is still a great deal of optimization of the design that needs to be done," says Grimes. "Now, with the help of the Pennsylvania Energy Development Authority, we will have equipment to make high quality titanium coatings that are thicker. If we get about 3 percent conversion with 360 nanometers, what we could get with 4 microns is an exciting question we soon hope to answer."

The thickness of the titanium layer constrains the height of the nanotubes. With thicker initial coatings, longer tubes would produce more electrons that do not recombine, producing more electricity.

Other aspects of the titania nanotube dye sensitive solar cells that need to be optimized include the thickness of the cells. Currently, spacers separate the two layers and provide internal support. These spacers are 25 microns thick. If the spacers could be made as sturdy, but shorter, there would be less of a distance for the electrons to travel and more electrons will make it across the electrodes.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>