Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biofuels Can Pick Up Oil’s Slack


Wood chips used to make bioethanol

With world oil demand growing, supplies dwindling and the potential for weather- and conflict-related supply interruptions, other types of fuels and technologies are needed to help pick up the slack.

A group of experts in science, engineering and public policy from the Georgia Institute of Technology, Imperial College London and the Oak Ridge National Laboratory recommend a comprehensive research and policy plan aimed at increasing the practicality of using biofuels and biomaterials as a supplement to petroleum. The review article, called “The Path Forward for Biofuels and Biomaterials,” appears in the Jan. 27 issue of Science.

“We can readily address, with research, 30 percent of current transportation fuel needs. But reaching that goal will require 5-10 years and significant policy and technical effort,” said Dr. Arthur Ragauskas, a professor in Georgia Tech’s School of Chemistry and Biochemistry and a lead on the project.

While many think of ethanol when they think of biofuels, the group recommends a much broader spectrum of possible materials including agriculture wastes such as corn stovers and wheat stalks, fast-growing trees such as poplar and willow and several perennial energy crops such as switchgrass.

In addition to including more diversity in materials, the group also recommends some changes to the plants themselves using techniques such as accelerated domestication to make them more efficient energy crops. But doubling the productivity of energy crops will mean identifying constraints and correcting them with genomic tools.

To make biofuels a truly practical alternative to petroleum, the group says there will need to be significant improvements in how biofuel is processed. Their vision is for a fully integrated biorefinery, which is designed to take advantage of advances in plant science and innovative biomass conversion processes and equipment to produce fuels, power and chemicals from biomass.

The biorefinery would work much like a petroleum refinery, which produces multiple fuels and products from petroleum.

The group based its recommendations on research studies, including studies on the development of rapid-growth, high-energy content trees and perennials, novel environmentally friendly biomass extraction technologies, innovative catalysts for the conversion of agriculture and wood residues to bioethanol/diesel and hydrogen, bio-fuel cells and next-generation green plastics and materials prepared from sustainable sources such as plants, sunlight and wastes.

Other team leaders on the project include Dr. Charlotte Williams and Dr. Richard Murphy from the Imperial College London and Dr. Brian Davison from Oak Ridge National Laboratory. Other key collaborators include Dr. Charles Liotta, Dr. Charles Eckert, John Cairney, James Frederick and Jason P. Hallett from Georgia Tech, Dr. Richard Templer, George Britovsek and David Leak from Imperial College London; and Dr. Lee Riedinger, Jonathan R. Mielenz and Timothy Tschaplinski from Oak Ridge National Laboratory.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked ninth among U.S. News & World Report’s top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>