Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers collaborate to understand phenomena controlling PEM fuel cell performance, durability

27.01.2006


Two researchers at Sandia National Laboratories are working to understand several key phenomena that control hydrogen-fueled PEM (proton exchange membrane or polymer electrolyte membrane) fuel cells. One, Ken S. Chen, is developing computational models to describe the phenomena while the other, Mike Hickner, is performing physical experimentation.



The work is internally funded through a three-year Laboratory Directed Research and Development (LDRD) grant to tackle key technical challenges. Sandia is a National Nuclear Security Administration laboratory.

Proper water management and performance degradation, or durability, must be addressed before PEM fuel cells can be used to routinely power automobiles and homes.


"A natural byproduct of using hydrogen and oxygen to produce electricity in a PEM fuel cell is water [with waste heat being the other]," Chen, project principal investigator, says. "One challenge is maintaining the proper amount of water in a PEM fuel cell. Sufficient water in the membrane is needed to maintain its conductivity, whereas too much liquid water can result in flooding the cathode gas diffusion layer, which prevents reactant oxygen from reaching catalytic sites and causes performance deterioration."

The work is leading to better understandings in a couple of important areas, including how liquid water is produced, transported, and removed efficiently in PEM fuel cells and how PEM fuel cell performance degrades. Such understandings are key in finding ways to maintain the cells’ long-term performance during normal and harsh (e.g. freezing) conditions and improving their durability.

The close teaming between Chen’s modeling and Hickner’s experimental efforts has been quite helpful in meeting project objectives.

"Our approach in combining computational modeling with experiments is unique," Chen says. "Typically, Mike would perform discovery experiments to gain physical insights. I would then develop a model to describe the observation or data that Mike has obtained. Mike would perform further experiments so I can validate the model I have developed."

Hickner says they’ve obtained some nice feedback between the experiments and analyses. The intent is to build a computational tool that can be used in designing fuel cells, eliminating the need to do experiments on every single part of them.

"We want to have all the small pieces worked out in the modeling process so we can concentrate on the larger issues with experiments," he says.

Chen has been using GOMA, a Sandia-developed multidimensional and multi-physics finite-element computer code, as the basic platform to develop 2-D performance models for PEM fuel cells. With the assistance of Nathan Siegel, a postdoctoral researcher with the Solar Technologies Department at Sandia, he is also exploring the development of quasi-3D PEM fuel cell models using FLUENT, a commercial computational fluid dynamic computer code. Chen emphasizes that the focus of this LDRD project is on understanding the key phenomena using experimental means and computational models, both simplified and multi-dimensional.

Joel Lash, manager of Sandia’s Multiphase Transport Processes Department, concurs. "Sandia’s state-of-the-art multi-physics codes, like GOMA, form the backbone from which simplified phenomena-centric models can be developed to explore complex behavior, such as occurs in operating PEM fuel cells," he says.

For the past couple of years Chen and Hickner have focused mainly on liquid water transport, developing a PEM fuel cell model that can be employed to simulate a fuel cell’s performance, and performing diagnostic tests on fuel cells for phenomena discovery and model validation. Next, Chen says, they will tackle the key technical issues of performance degradation or durability, including performance degradation under normal operating conditions and under freezing operating conditions.

To date, the team has reported portions of its work in three refereed publications, four proceedings papers, and half a dozen technical presentations.

"Our validation method is new and exciting and leading us to learn some things not well known previously," Hickner says.

Bruce Kelley, project manager for the PEM Fuel Cell LDRD and manager of Sandia’s Chemical Biological Systems Department, says the project was developed specifically to leverage Sandia’s capabilities in multi-physics modeling and membrane materials to develop broader capabilities with applicability to fuel cells and other related technology areas.

In doing so, Kelley says, "We have attracted significant industrial interest in the work."

Chris Burroughs | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

nachricht Plug & Play Light Solution for NOx measurement
01.12.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>