Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next generation three-dimensional photoelectric modules

25.01.2006


In December the ROBOTIKER-TECNALIA Technological Centre signed a joint Agreement with the Japanese company KYOSEMI CORPORATION for the analysis of Photoelectric Modules based on a new, vaulted-structure topology.



These new modules, providing greater captation of sunlight in 3 dimensions and a higher capacity of energy generation, form a product that is in the final phase of research and development for its mass production.

The agreement signed with ROBOTIKER-TECNALIA provides for the behaviour analysis of the new modules from KYOSEMI. Likewise the Technological Centre will analyse the stress intensity curves under different solar radiation conditions and the disadaptations that provoke various inclinations and partial shadows. This research enables the obtention of a series of conclusions that facilitate the design enhancement of the modules, at all times favouring their performance within a system formed by hundreds of modules.


Research into Photoelectric Systems

The agreement, initially a signing for one year, is a significant boost to the line of research that ROBOTIKER-TECNALIA initiated a few years ago into Intelligent Photoelectric Systems.

The research involves the development of new topologies for photoelectric plants as a solution to the high losses experienced by the current photoelectric systems; above all those forming part of the urban environment.

This new topology, known as Modular Architecture, is based on the incorporation of a small electronic system into each photoelectric module in order to carry out the distributed control of the energy provided. In this way, the losses of the photoelectric systems are minimised, enabling each solar panel to operate to its maximum potential independently of the rest of the modules.

The advantage of using modular systems will be more palpable in the larger photoelectric systems connected to the grid, such as those making up the urban environment, particularly in buildings: photoelectric installations on rooftops, roofs and walls. These are more complex systems, given that they have a large number of panels and, in many cases, have the façades and roofs with different orientations and inclinations.

Efficiency of current, monocrystalline silicon photoelectric modules - the most common ones on the market (14-17%) - is seen as low compared to other technologies. Moreover, actual photoelectric plants show overall losses of energy of about 25%. If these losses are not taken into account in the design of the system, estimates have to be made of superdimensional energy production that are greater than the real values and lead to non-operational photoelectric plants and low productivity, thus damaging the image of photoelectric energy in general.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=864

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>