Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next generation three-dimensional photoelectric modules

25.01.2006


In December the ROBOTIKER-TECNALIA Technological Centre signed a joint Agreement with the Japanese company KYOSEMI CORPORATION for the analysis of Photoelectric Modules based on a new, vaulted-structure topology.



These new modules, providing greater captation of sunlight in 3 dimensions and a higher capacity of energy generation, form a product that is in the final phase of research and development for its mass production.

The agreement signed with ROBOTIKER-TECNALIA provides for the behaviour analysis of the new modules from KYOSEMI. Likewise the Technological Centre will analyse the stress intensity curves under different solar radiation conditions and the disadaptations that provoke various inclinations and partial shadows. This research enables the obtention of a series of conclusions that facilitate the design enhancement of the modules, at all times favouring their performance within a system formed by hundreds of modules.


Research into Photoelectric Systems

The agreement, initially a signing for one year, is a significant boost to the line of research that ROBOTIKER-TECNALIA initiated a few years ago into Intelligent Photoelectric Systems.

The research involves the development of new topologies for photoelectric plants as a solution to the high losses experienced by the current photoelectric systems; above all those forming part of the urban environment.

This new topology, known as Modular Architecture, is based on the incorporation of a small electronic system into each photoelectric module in order to carry out the distributed control of the energy provided. In this way, the losses of the photoelectric systems are minimised, enabling each solar panel to operate to its maximum potential independently of the rest of the modules.

The advantage of using modular systems will be more palpable in the larger photoelectric systems connected to the grid, such as those making up the urban environment, particularly in buildings: photoelectric installations on rooftops, roofs and walls. These are more complex systems, given that they have a large number of panels and, in many cases, have the façades and roofs with different orientations and inclinations.

Efficiency of current, monocrystalline silicon photoelectric modules - the most common ones on the market (14-17%) - is seen as low compared to other technologies. Moreover, actual photoelectric plants show overall losses of energy of about 25%. If these losses are not taken into account in the design of the system, estimates have to be made of superdimensional energy production that are greater than the real values and lead to non-operational photoelectric plants and low productivity, thus damaging the image of photoelectric energy in general.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=864

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>