Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next generation three-dimensional photoelectric modules

25.01.2006


In December the ROBOTIKER-TECNALIA Technological Centre signed a joint Agreement with the Japanese company KYOSEMI CORPORATION for the analysis of Photoelectric Modules based on a new, vaulted-structure topology.



These new modules, providing greater captation of sunlight in 3 dimensions and a higher capacity of energy generation, form a product that is in the final phase of research and development for its mass production.

The agreement signed with ROBOTIKER-TECNALIA provides for the behaviour analysis of the new modules from KYOSEMI. Likewise the Technological Centre will analyse the stress intensity curves under different solar radiation conditions and the disadaptations that provoke various inclinations and partial shadows. This research enables the obtention of a series of conclusions that facilitate the design enhancement of the modules, at all times favouring their performance within a system formed by hundreds of modules.


Research into Photoelectric Systems

The agreement, initially a signing for one year, is a significant boost to the line of research that ROBOTIKER-TECNALIA initiated a few years ago into Intelligent Photoelectric Systems.

The research involves the development of new topologies for photoelectric plants as a solution to the high losses experienced by the current photoelectric systems; above all those forming part of the urban environment.

This new topology, known as Modular Architecture, is based on the incorporation of a small electronic system into each photoelectric module in order to carry out the distributed control of the energy provided. In this way, the losses of the photoelectric systems are minimised, enabling each solar panel to operate to its maximum potential independently of the rest of the modules.

The advantage of using modular systems will be more palpable in the larger photoelectric systems connected to the grid, such as those making up the urban environment, particularly in buildings: photoelectric installations on rooftops, roofs and walls. These are more complex systems, given that they have a large number of panels and, in many cases, have the façades and roofs with different orientations and inclinations.

Efficiency of current, monocrystalline silicon photoelectric modules - the most common ones on the market (14-17%) - is seen as low compared to other technologies. Moreover, actual photoelectric plants show overall losses of energy of about 25%. If these losses are not taken into account in the design of the system, estimates have to be made of superdimensional energy production that are greater than the real values and lead to non-operational photoelectric plants and low productivity, thus damaging the image of photoelectric energy in general.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=864

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>