Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop smallest device to control light, advance silicon technology

20.01.2006


An electrical engineer at the University of Texas at Austin has made a laser light blink while passing through a miniaturized silicon chip, a major step toward developing commercially viable optical interconnects for high performance computers and other devices.



Researchers for decades have sought to harness light as a messenger on silicon chips because light can move thousands of times faster through solid materials than electrons and can carry more information at once, while requiring less energy.

Ray Chen, a professor of electrical engineering, and graduate students Wei Jiang, YongQiang Jiang and Lanlan Gu created a chip made of silicon “photonic crystals” whose complex internal structure slowed light traveling through the chip. The laser light slowed down enough that a small electric current could alter, or modulate, the pattern of light transmission.


“We were able to get our new silicon modulator to control the transmission of laser light, while using 10 times less power than normally needed for silicon modulators,” said Chen, who holds the Temple Foundation Endowed Faculty Fellowship No. 4.

He will give an invited talk about the latest update on the miniaturized device on Jan. 25, at the Optoelectronics 2006 Symposia of the SPIE Photonics West Conference in San Jose, Calif.

For light to encode meaningful information, its intensity or other characteristics need to be modulated, just as air that passes through a person’s vocal cords is modulated to produce speech sounds by actions that include moving the lips and tongue. Because Chen was able to modify light using electric current, which itself is modifiable, he expects to be able to modulate the light to blink on and off at different rates, or to change in intensity.

Once such silicon modulators are combined with lasers on a silicon platform, these optical chips could become a mainstay of consumer electronic devices, telecommunication systems, biosensors and other devices. In computers, the light-modulating chips would primarily serve to send information between a computer’s microprocessors and its memory, a process called interconnection.

“In a Pentium 4, over 50 percent of the computer’s power is consumed by interconnection,” Chen said.

Other advantages of optical chips based on silicon photonic crystals would include their reduced risk of overheating due to lower power needs, the ability to fabricate optical chips primarily with traditional mass-production practices in a silicon foundry and the expected smaller size of optical modulators and other optical silicon elements of the future.

Chen initially published findings on the silicon modulator in the Nov. 28, 2005, issue of the journal Applied Physics Letters. That article described how less than 3 milliwatts of power was needed for light modulation. The length of the special silicon chip the light needed to travel before being modifiable was 80 micrometers (.08 millimeters). That is about 10 times shorter than the best conventional silicon optical modulators. Smaller components help drive manufacturing costs down,and also transmit signals faster.

The shortened length was possible because Chen’s laboratory designed the silicon photonic crystals that are the key component of the modulator to have large regions of regularly spaced, nanosize holes that light would have to traverse. Navigating the Swiss cheese-like regions of the crystals, called line defects, slowed the light’s passage considerably.

Since the November publication, Chen’s laboratory has continued evaluating the specialized silicon chips and learning how to change the blinking rate of laser light traversing their silicon modulator.

This research is supported by the U.S. Air Force Office of Scientific Research. Jiang is now a research scientist at Omega Optics Inc. in Austin, Texas. For photos of Dr. Chen, go to: www.engr.utexas.edu/news/action_shots/pages/chen.cfm.

Becky Rische | EurekAlert!
Further information:
http://www.engr.utexas.edu

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>