Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop smallest device to control light, advance silicon technology

20.01.2006


An electrical engineer at the University of Texas at Austin has made a laser light blink while passing through a miniaturized silicon chip, a major step toward developing commercially viable optical interconnects for high performance computers and other devices.



Researchers for decades have sought to harness light as a messenger on silicon chips because light can move thousands of times faster through solid materials than electrons and can carry more information at once, while requiring less energy.

Ray Chen, a professor of electrical engineering, and graduate students Wei Jiang, YongQiang Jiang and Lanlan Gu created a chip made of silicon “photonic crystals” whose complex internal structure slowed light traveling through the chip. The laser light slowed down enough that a small electric current could alter, or modulate, the pattern of light transmission.


“We were able to get our new silicon modulator to control the transmission of laser light, while using 10 times less power than normally needed for silicon modulators,” said Chen, who holds the Temple Foundation Endowed Faculty Fellowship No. 4.

He will give an invited talk about the latest update on the miniaturized device on Jan. 25, at the Optoelectronics 2006 Symposia of the SPIE Photonics West Conference in San Jose, Calif.

For light to encode meaningful information, its intensity or other characteristics need to be modulated, just as air that passes through a person’s vocal cords is modulated to produce speech sounds by actions that include moving the lips and tongue. Because Chen was able to modify light using electric current, which itself is modifiable, he expects to be able to modulate the light to blink on and off at different rates, or to change in intensity.

Once such silicon modulators are combined with lasers on a silicon platform, these optical chips could become a mainstay of consumer electronic devices, telecommunication systems, biosensors and other devices. In computers, the light-modulating chips would primarily serve to send information between a computer’s microprocessors and its memory, a process called interconnection.

“In a Pentium 4, over 50 percent of the computer’s power is consumed by interconnection,” Chen said.

Other advantages of optical chips based on silicon photonic crystals would include their reduced risk of overheating due to lower power needs, the ability to fabricate optical chips primarily with traditional mass-production practices in a silicon foundry and the expected smaller size of optical modulators and other optical silicon elements of the future.

Chen initially published findings on the silicon modulator in the Nov. 28, 2005, issue of the journal Applied Physics Letters. That article described how less than 3 milliwatts of power was needed for light modulation. The length of the special silicon chip the light needed to travel before being modifiable was 80 micrometers (.08 millimeters). That is about 10 times shorter than the best conventional silicon optical modulators. Smaller components help drive manufacturing costs down,and also transmit signals faster.

The shortened length was possible because Chen’s laboratory designed the silicon photonic crystals that are the key component of the modulator to have large regions of regularly spaced, nanosize holes that light would have to traverse. Navigating the Swiss cheese-like regions of the crystals, called line defects, slowed the light’s passage considerably.

Since the November publication, Chen’s laboratory has continued evaluating the specialized silicon chips and learning how to change the blinking rate of laser light traversing their silicon modulator.

This research is supported by the U.S. Air Force Office of Scientific Research. Jiang is now a research scientist at Omega Optics Inc. in Austin, Texas. For photos of Dr. Chen, go to: www.engr.utexas.edu/news/action_shots/pages/chen.cfm.

Becky Rische | EurekAlert!
Further information:
http://www.engr.utexas.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>