Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers study energy-saving method for small office buildings


Engineers have developed a method for "precooling" small office buildings and reducing energy consumption during times of peak demand, promising not only to save money but also to help prevent power failures during hot summer days.

The method has been shown to reduce the cooling-related demand for electricity in small office buildings by 30 percent during hours of peak power consumption in California’s sweltering summer climate. Small office buildings represent the majority of commercial structures, so reducing the electricity demand for air conditioning in those buildings could help California prevent power-capacity problems like those that plagued the state in 2000 and 2001, said James Braun, a Purdue University professor of mechanical engineering.

The results focus on California because the research was funded by the California Energy Commission, but the same demand-saving approach could be tailored to buildings in any state.

"California officials are especially concerned about capacity problems in the summertime," said Braun, whose research is based at Purdue’s Ray W. Herrick Laboratories.

Findings will be detailed in three papers to be presented on Monday (Jan. 23) during the Winter Meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers in Chicago. Two of the papers were written by Braun and doctoral student Kyoung-Ho Lee. The other paper was written by researchers at the Lawrence Berkeley National Laboratory, a U.S. Department of Energy laboratory managed by the University of California.

The method works by running air conditioning at cooler-than-normal settings in the morning and then raising the thermostat to warmer-than-normal settings in the afternoon, when energy consumption escalates during hot summer months. Because the building’s mass has been cooled down, it does not require as much energy for air conditioning during the hottest time of day, when electricity is most expensive and in highest demand.

Precooling structures so that it takes less power to cool buildings during times of peak demand is not a new concept. But researchers have developed a "control algorithm," or software that determines the best strategy for changing thermostat settings in a given building in order to save the most money. Research has shown that using a thermal mass control strategy improperly can actually result in higher energy costs. Factors such as a building’s construction, the design of its air-conditioning system, number of windows, whether the floors are carpeted, and other information must be carefully considered to determine how to best use the method.

"The idea is to set the thermostat at 70 degrees Fahrenheit for the morning hours, and then you start adjusting that temperature upwards with a maximum temperature of around 78 during the afternoon hours, " Braun said. "When the thermostat settings are adjusted in an optimal fashion, the result is a 25 percent to 30 percent reduction in peak electrical demand for air conditioning.

"If you couple this reduction in demand with a utility rate structure that charges more during critical peak periods, utility costs will drop. Without such a change in peak rates, though, the actual impact on operating costs is relatively small, with about $50 in annual savings per 1,000 square feet of building space.

"A good incentive for reducing peak demand would be to impose a higher peak demand charge for the critical peak-pricing periods, and if customers reduce their consumption during these times, they are rewarded with lower energy costs for the rest of the time."

The recent work at Purdue has been geared toward small commercial buildings, which use a type of cooling system called "packaged" air conditioning equipment.

"Small commercial buildings tend to be one to four stories, but the main distinction is that they use packaged equipment," Braun said. "A packaged air conditioner is a cooling system that is completely assembled in a factory rather than on the site. An example of a small commercial building might be a shopping mall, which contains several rooftop air conditioning units that all have individual thermostat controls, compared to a system that has one central cooling system that must be put together on the site."

Researchers at the Berkeley lab performed field demonstrations and evaluated the human-comfort aspects of different thermostat adjustment strategies, specifically how cool the temperature can be reduced in the morning hours and how high it can rise in the afternoon hours before the building occupants complain.

"We found that you can go down to 70 degrees and people will not complain," Braun said. "In fact, they won’t even notice."

A setting of 70 degrees is about 4 degrees cooler than the normal setting for that time of day.

"Then, when the critical peak pricing period starts in the afternoon, you start adjusting that temperature upwards, going as high as 78," Braun said. "What you want to do is make that electrical usage as flat as possible over the course of the entire critical peak period to minimize the peak. Normally it will peak in the middle of the afternoon, but you want to flatten the peak."

The findings being presented during the upcoming conference detail how to achieve the flat power usage for specific buildings, depending on a structure’s characteristics.

"This requires some limited testing for every building," Braun said.

Writer: Emil Venere, (765) 494-4709,

Source: James Braun, (765) 494-9157,

Purdue News Service: (765) 494-2096;

Emil Venere | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>