Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers study energy-saving method for small office buildings

19.01.2006


Engineers have developed a method for "precooling" small office buildings and reducing energy consumption during times of peak demand, promising not only to save money but also to help prevent power failures during hot summer days.



The method has been shown to reduce the cooling-related demand for electricity in small office buildings by 30 percent during hours of peak power consumption in California’s sweltering summer climate. Small office buildings represent the majority of commercial structures, so reducing the electricity demand for air conditioning in those buildings could help California prevent power-capacity problems like those that plagued the state in 2000 and 2001, said James Braun, a Purdue University professor of mechanical engineering.

The results focus on California because the research was funded by the California Energy Commission, but the same demand-saving approach could be tailored to buildings in any state.


"California officials are especially concerned about capacity problems in the summertime," said Braun, whose research is based at Purdue’s Ray W. Herrick Laboratories.

Findings will be detailed in three papers to be presented on Monday (Jan. 23) during the Winter Meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers in Chicago. Two of the papers were written by Braun and doctoral student Kyoung-Ho Lee. The other paper was written by researchers at the Lawrence Berkeley National Laboratory, a U.S. Department of Energy laboratory managed by the University of California.

The method works by running air conditioning at cooler-than-normal settings in the morning and then raising the thermostat to warmer-than-normal settings in the afternoon, when energy consumption escalates during hot summer months. Because the building’s mass has been cooled down, it does not require as much energy for air conditioning during the hottest time of day, when electricity is most expensive and in highest demand.

Precooling structures so that it takes less power to cool buildings during times of peak demand is not a new concept. But researchers have developed a "control algorithm," or software that determines the best strategy for changing thermostat settings in a given building in order to save the most money. Research has shown that using a thermal mass control strategy improperly can actually result in higher energy costs. Factors such as a building’s construction, the design of its air-conditioning system, number of windows, whether the floors are carpeted, and other information must be carefully considered to determine how to best use the method.

"The idea is to set the thermostat at 70 degrees Fahrenheit for the morning hours, and then you start adjusting that temperature upwards with a maximum temperature of around 78 during the afternoon hours, " Braun said. "When the thermostat settings are adjusted in an optimal fashion, the result is a 25 percent to 30 percent reduction in peak electrical demand for air conditioning.

"If you couple this reduction in demand with a utility rate structure that charges more during critical peak periods, utility costs will drop. Without such a change in peak rates, though, the actual impact on operating costs is relatively small, with about $50 in annual savings per 1,000 square feet of building space.

"A good incentive for reducing peak demand would be to impose a higher peak demand charge for the critical peak-pricing periods, and if customers reduce their consumption during these times, they are rewarded with lower energy costs for the rest of the time."

The recent work at Purdue has been geared toward small commercial buildings, which use a type of cooling system called "packaged" air conditioning equipment.

"Small commercial buildings tend to be one to four stories, but the main distinction is that they use packaged equipment," Braun said. "A packaged air conditioner is a cooling system that is completely assembled in a factory rather than on the site. An example of a small commercial building might be a shopping mall, which contains several rooftop air conditioning units that all have individual thermostat controls, compared to a system that has one central cooling system that must be put together on the site."

Researchers at the Berkeley lab performed field demonstrations and evaluated the human-comfort aspects of different thermostat adjustment strategies, specifically how cool the temperature can be reduced in the morning hours and how high it can rise in the afternoon hours before the building occupants complain.

"We found that you can go down to 70 degrees and people will not complain," Braun said. "In fact, they won’t even notice."

A setting of 70 degrees is about 4 degrees cooler than the normal setting for that time of day.

"Then, when the critical peak pricing period starts in the afternoon, you start adjusting that temperature upwards, going as high as 78," Braun said. "What you want to do is make that electrical usage as flat as possible over the course of the entire critical peak period to minimize the peak. Normally it will peak in the middle of the afternoon, but you want to flatten the peak."

The findings being presented during the upcoming conference detail how to achieve the flat power usage for specific buildings, depending on a structure’s characteristics.

"This requires some limited testing for every building," Braun said.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: James Braun, (765) 494-9157, jbraun@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>