Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia researchers seek ways to make lithium-ion batteries work longer, safer

18.01.2006


Batteries could soon replace standard nickel-metal hydride batteries in hybrid vehicles



As part of the Department of Energy-funded FreedomCAR program, Sandia National Laboratories’ Power Sources Technology Group is researching ways to make lithium-ion batteries work longer and safer. The research could lead to these batteries being used in new hybrid electric vehicles (HEVs) in the next five to ten years.

"Batteries are a necessary part of hybrid electric-gasoline powered vehicles and someday, when the technology matures, will be part of hybrid electric-hydrogen fuel cell powered vehicles," says Dan Doughty, manager of Sandia’s Advanced Power Sources Research and Development Department. "Current hybrid vehicles use nickel-metal hydride batteries, but a safe lithium-ion battery will be a much better option for the hybrids."


He notes a lithium-ion battery has four times the energy density of lead-acid batteries and two to three times the energy density of nickel-cadmium and nickel-metal hydride batteries. It also has the potential to be one of the lowest-cost battery systems.

Doughty’s department receives about $1.5 million a year from the FreedomCAR program to improve the safety, lengthen the lifetime, and reduce costs of lithium-ion batteries.

Sandia is a National Nuclear Security Administration lab.

The FreedomCAR program, initiated by President Bush in 2002, focuses on developing hydrogen-powered electric vehicles to help free the U.S. from dependence on foreign oil supplies. Five national laboratories - Sandia, Argonne, Lawrence Berkeley, Idaho, and Brookhaven - are involved in the program, each researching different aspects of making hybrid electric-hydrogen vehicles a reality.

Sandia’s FreedomCAR work centers on the areas of battery abuse tolerance and accelerated lifetime prediction, with abuse tolerance receiving most of the focus.

"We want to develop a battery that has a graceful failure - meaning that if it’s damaged, it won’t cause other problems," Doughty says. "We have to understand how batteries fail and why they fail."

The technical goal is to comprehend mechanisms that lead to poor abuse tolerance, including heat- and gas-generating reactions. Understanding the chemical response to abuse can point the way to better battery materials. But, Doughty says, there is no "magic bullet" for completely stable lithium-ion cells.

"Fixing the problem will come from informed choices on improved cell materials, additives, and cell design, as well as good engineering practices."

Work in abuse tolerance is beginning to shed light on mechanisms that control cell response, including effects of the anode and cathode, electrolyte breakdown, and battery additives.

The other area of work, accelerated life test, involves developing a method to predict lithium-ion battery life.

"We have two approaches in our research - the empirical model and the mechanistic model," Doughty says. "The empirical model generates life prediction from accelerated degradation test data, while the mechanistic model relates life prediction to changes in battery materials. Our approach provides an independent measure of battery life so we don’t have to rely on what battery manufacturers tell us."

Improved abuse test procedures developed at Sandia have led to lithium-ion test standards that the battery team has developed and recently published in a Sandia research report. Doughty anticipates that the Society of Automotive Engineers will soon adopt these test procedures as national standards, just as they adopted in 1999 the abuse test procedures Sandia developed for electric vehicle batteries.

"There has been substantial progress in making batteries more tolerant to abusive conditions," Doughty says. "It won’t be long before these batteries will be used in gasoline-electric hybrid vehicles. And the great thing is this technology will be able to transfer over to the electric-hydrogen fuel cell powered hybrid vehicles of the future."

Chris Burroughs | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>