Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia researchers seek ways to make lithium-ion batteries work longer, safer

18.01.2006


Batteries could soon replace standard nickel-metal hydride batteries in hybrid vehicles



As part of the Department of Energy-funded FreedomCAR program, Sandia National Laboratories’ Power Sources Technology Group is researching ways to make lithium-ion batteries work longer and safer. The research could lead to these batteries being used in new hybrid electric vehicles (HEVs) in the next five to ten years.

"Batteries are a necessary part of hybrid electric-gasoline powered vehicles and someday, when the technology matures, will be part of hybrid electric-hydrogen fuel cell powered vehicles," says Dan Doughty, manager of Sandia’s Advanced Power Sources Research and Development Department. "Current hybrid vehicles use nickel-metal hydride batteries, but a safe lithium-ion battery will be a much better option for the hybrids."


He notes a lithium-ion battery has four times the energy density of lead-acid batteries and two to three times the energy density of nickel-cadmium and nickel-metal hydride batteries. It also has the potential to be one of the lowest-cost battery systems.

Doughty’s department receives about $1.5 million a year from the FreedomCAR program to improve the safety, lengthen the lifetime, and reduce costs of lithium-ion batteries.

Sandia is a National Nuclear Security Administration lab.

The FreedomCAR program, initiated by President Bush in 2002, focuses on developing hydrogen-powered electric vehicles to help free the U.S. from dependence on foreign oil supplies. Five national laboratories - Sandia, Argonne, Lawrence Berkeley, Idaho, and Brookhaven - are involved in the program, each researching different aspects of making hybrid electric-hydrogen vehicles a reality.

Sandia’s FreedomCAR work centers on the areas of battery abuse tolerance and accelerated lifetime prediction, with abuse tolerance receiving most of the focus.

"We want to develop a battery that has a graceful failure - meaning that if it’s damaged, it won’t cause other problems," Doughty says. "We have to understand how batteries fail and why they fail."

The technical goal is to comprehend mechanisms that lead to poor abuse tolerance, including heat- and gas-generating reactions. Understanding the chemical response to abuse can point the way to better battery materials. But, Doughty says, there is no "magic bullet" for completely stable lithium-ion cells.

"Fixing the problem will come from informed choices on improved cell materials, additives, and cell design, as well as good engineering practices."

Work in abuse tolerance is beginning to shed light on mechanisms that control cell response, including effects of the anode and cathode, electrolyte breakdown, and battery additives.

The other area of work, accelerated life test, involves developing a method to predict lithium-ion battery life.

"We have two approaches in our research - the empirical model and the mechanistic model," Doughty says. "The empirical model generates life prediction from accelerated degradation test data, while the mechanistic model relates life prediction to changes in battery materials. Our approach provides an independent measure of battery life so we don’t have to rely on what battery manufacturers tell us."

Improved abuse test procedures developed at Sandia have led to lithium-ion test standards that the battery team has developed and recently published in a Sandia research report. Doughty anticipates that the Society of Automotive Engineers will soon adopt these test procedures as national standards, just as they adopted in 1999 the abuse test procedures Sandia developed for electric vehicle batteries.

"There has been substantial progress in making batteries more tolerant to abusive conditions," Doughty says. "It won’t be long before these batteries will be used in gasoline-electric hybrid vehicles. And the great thing is this technology will be able to transfer over to the electric-hydrogen fuel cell powered hybrid vehicles of the future."

Chris Burroughs | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>