Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel laser sensor allows for precise tip clearance and vibration measurements of turbo-machines

23.12.2005


The Technische Universität Dresden (TU Dresden) and the German Aerospace Center (DLR) have cooperated in developing a novel laser sensor which measures two quantities that are important for turbine engineering more precise than ever before: firstly, the tip clearance between the rotating blades and the turbine casing over and, secondly, the vibrations resulting from the blades’ supersonic velocity. The novel laser Doppler profile sensor, which has been developed by Professor Jürgen Czarske and his team at the Department of Metrology at the Faculty of Electrical Engineering and Information Technology, exploits the advantages already known from laser technology but, in addition to velocity, is also capable of measuring positions.



Due to mechanical and thermal influences, the tip clearance constantly changes in terms of micrometers; however, it has to be controlled permanently. Furthermore, the tip clearance is also important in economic terms as a clearance, which amounts to 0.5 mm on average, that is as precise and as low as possible can result in enormous cost reductions, given the turbines’ high energy consumption. Traditionally, the tip clearance has been determined via so called capacitive measurements, which are carried out through electrical sensors on the casing over. However, while these are less precise and can only be applied with metal, the novel laser sensor is especially suitable for turbine blades made of ceramics or synthetics. Thus, it is likely to be of great interest for the aircraft industry, which has increasingly employed lightweight construction.

The scientists applied the laser Doppler technology, developing a sensor which allows for the mathematical calculation of the tip clearance via the electronic signal processing of two different Doppler frequencies – instead of one – which are generated by two separate laser wavelengths. In the process, two laser wavelengths are sent via fibre optic cable to a measuring head which is situated on the turbine’s outside wall. Through a window, the laser beams get to the blades which in turn reflect the beams. The optic signals are then transformed into electronic signals and are analysed via a computer.


The experiment was carried out on a turbine at the Institute of Drive Engineering at the DLR in Cologne. The researchers constructed an optical measuring head which is as compact and as robust so as to overcome the vibrations resulting from the turbine blades’ supersonic velocity. The measuring head was especially designed in Dresden and contains an integrated cooling system so that measurements are even possible at a temperature of 300°C. During the experiment the blades passed the measuring point 22.000 times per second. The tip clearance could be determined accurate to 20 µm – a new record! Until then, the measurement uncertainty amounted to 50-100 µm.

Apart from the changes of the tip clearance, the accurate detection of the vibrations presented an unplanned but welcome result. This became possible as each blade could be allocated to an exact measurement and, thus, the temporal changing of the position was determined. Professor Czarske relates the research team’s success to the synergy effects following the cooperation of electrical engineers, mechanical engineers and physicians.

The laser sensor, which has already been patented, permits an online control of the tip clearance between the turbine blades and casing over. On behalf of the Bosch GmbH it is being applied to the development of an electric motor. Also, machine tools present another major area of application of the laser sensor, allowing for the in-process measurement of both absolute radius and shape of an object. Currently, Professor Czarske and his team are looking for industrial partners in order to continue with their research, for example the laser sensor is supposed to be further miniaturised and refined so it can be transferred into mass production.

The project was promoted by the German Research Association.

Prof Jürgen Czarske | alfa
Further information:
http://www.iee.et.tu-dresden.de

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>