Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel laser sensor allows for precise tip clearance and vibration measurements of turbo-machines

23.12.2005


The Technische Universität Dresden (TU Dresden) and the German Aerospace Center (DLR) have cooperated in developing a novel laser sensor which measures two quantities that are important for turbine engineering more precise than ever before: firstly, the tip clearance between the rotating blades and the turbine casing over and, secondly, the vibrations resulting from the blades’ supersonic velocity. The novel laser Doppler profile sensor, which has been developed by Professor Jürgen Czarske and his team at the Department of Metrology at the Faculty of Electrical Engineering and Information Technology, exploits the advantages already known from laser technology but, in addition to velocity, is also capable of measuring positions.



Due to mechanical and thermal influences, the tip clearance constantly changes in terms of micrometers; however, it has to be controlled permanently. Furthermore, the tip clearance is also important in economic terms as a clearance, which amounts to 0.5 mm on average, that is as precise and as low as possible can result in enormous cost reductions, given the turbines’ high energy consumption. Traditionally, the tip clearance has been determined via so called capacitive measurements, which are carried out through electrical sensors on the casing over. However, while these are less precise and can only be applied with metal, the novel laser sensor is especially suitable for turbine blades made of ceramics or synthetics. Thus, it is likely to be of great interest for the aircraft industry, which has increasingly employed lightweight construction.

The scientists applied the laser Doppler technology, developing a sensor which allows for the mathematical calculation of the tip clearance via the electronic signal processing of two different Doppler frequencies – instead of one – which are generated by two separate laser wavelengths. In the process, two laser wavelengths are sent via fibre optic cable to a measuring head which is situated on the turbine’s outside wall. Through a window, the laser beams get to the blades which in turn reflect the beams. The optic signals are then transformed into electronic signals and are analysed via a computer.


The experiment was carried out on a turbine at the Institute of Drive Engineering at the DLR in Cologne. The researchers constructed an optical measuring head which is as compact and as robust so as to overcome the vibrations resulting from the turbine blades’ supersonic velocity. The measuring head was especially designed in Dresden and contains an integrated cooling system so that measurements are even possible at a temperature of 300°C. During the experiment the blades passed the measuring point 22.000 times per second. The tip clearance could be determined accurate to 20 µm – a new record! Until then, the measurement uncertainty amounted to 50-100 µm.

Apart from the changes of the tip clearance, the accurate detection of the vibrations presented an unplanned but welcome result. This became possible as each blade could be allocated to an exact measurement and, thus, the temporal changing of the position was determined. Professor Czarske relates the research team’s success to the synergy effects following the cooperation of electrical engineers, mechanical engineers and physicians.

The laser sensor, which has already been patented, permits an online control of the tip clearance between the turbine blades and casing over. On behalf of the Bosch GmbH it is being applied to the development of an electric motor. Also, machine tools present another major area of application of the laser sensor, allowing for the in-process measurement of both absolute radius and shape of an object. Currently, Professor Czarske and his team are looking for industrial partners in order to continue with their research, for example the laser sensor is supposed to be further miniaturised and refined so it can be transferred into mass production.

The project was promoted by the German Research Association.

Prof Jürgen Czarske | alfa
Further information:
http://www.iee.et.tu-dresden.de

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>