Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel laser sensor allows for precise tip clearance and vibration measurements of turbo-machines

23.12.2005


The Technische Universität Dresden (TU Dresden) and the German Aerospace Center (DLR) have cooperated in developing a novel laser sensor which measures two quantities that are important for turbine engineering more precise than ever before: firstly, the tip clearance between the rotating blades and the turbine casing over and, secondly, the vibrations resulting from the blades’ supersonic velocity. The novel laser Doppler profile sensor, which has been developed by Professor Jürgen Czarske and his team at the Department of Metrology at the Faculty of Electrical Engineering and Information Technology, exploits the advantages already known from laser technology but, in addition to velocity, is also capable of measuring positions.



Due to mechanical and thermal influences, the tip clearance constantly changes in terms of micrometers; however, it has to be controlled permanently. Furthermore, the tip clearance is also important in economic terms as a clearance, which amounts to 0.5 mm on average, that is as precise and as low as possible can result in enormous cost reductions, given the turbines’ high energy consumption. Traditionally, the tip clearance has been determined via so called capacitive measurements, which are carried out through electrical sensors on the casing over. However, while these are less precise and can only be applied with metal, the novel laser sensor is especially suitable for turbine blades made of ceramics or synthetics. Thus, it is likely to be of great interest for the aircraft industry, which has increasingly employed lightweight construction.

The scientists applied the laser Doppler technology, developing a sensor which allows for the mathematical calculation of the tip clearance via the electronic signal processing of two different Doppler frequencies – instead of one – which are generated by two separate laser wavelengths. In the process, two laser wavelengths are sent via fibre optic cable to a measuring head which is situated on the turbine’s outside wall. Through a window, the laser beams get to the blades which in turn reflect the beams. The optic signals are then transformed into electronic signals and are analysed via a computer.


The experiment was carried out on a turbine at the Institute of Drive Engineering at the DLR in Cologne. The researchers constructed an optical measuring head which is as compact and as robust so as to overcome the vibrations resulting from the turbine blades’ supersonic velocity. The measuring head was especially designed in Dresden and contains an integrated cooling system so that measurements are even possible at a temperature of 300°C. During the experiment the blades passed the measuring point 22.000 times per second. The tip clearance could be determined accurate to 20 µm – a new record! Until then, the measurement uncertainty amounted to 50-100 µm.

Apart from the changes of the tip clearance, the accurate detection of the vibrations presented an unplanned but welcome result. This became possible as each blade could be allocated to an exact measurement and, thus, the temporal changing of the position was determined. Professor Czarske relates the research team’s success to the synergy effects following the cooperation of electrical engineers, mechanical engineers and physicians.

The laser sensor, which has already been patented, permits an online control of the tip clearance between the turbine blades and casing over. On behalf of the Bosch GmbH it is being applied to the development of an electric motor. Also, machine tools present another major area of application of the laser sensor, allowing for the in-process measurement of both absolute radius and shape of an object. Currently, Professor Czarske and his team are looking for industrial partners in order to continue with their research, for example the laser sensor is supposed to be further miniaturised and refined so it can be transferred into mass production.

The project was promoted by the German Research Association.

Prof Jürgen Czarske | alfa
Further information:
http://www.iee.et.tu-dresden.de

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>