Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretchable silicon could be next wave in electronics

19.12.2005


The next wave in electronics could be wavy electronics.



Researchers at the University of Illinois at Urbana-Champaign have developed a fully stretchable form of single-crystal silicon with micron-sized, wave-like geometries that can be used to build high-performance electronic devices on rubber substrates.

"Stretchable silicon offers different capabilities than can be achieved with standard silicon chips," said John Rogers, a professor of materials science and engineering and co-author of a paper to appear in the journal Science, as part of the Science Express Web site, on Dec 15.


Functional, stretchable and bendable electronics could be used in applications such as sensors and drive electronics for integration into artificial muscles or biological tissues, structural monitors wrapped around aircraft wings, and conformable skins for integrated robotic sensors, said Rogers, who is also a Founder Professor of Engineering, a researcher at the Beckman Institute for Advanced Science and Technology and a member of the Frederick Seitz Materials Research Laboratory.

To create their stretchable silicon, the researchers begin by fabricating devices in the geometry of ultrathin ribbons on a silicon wafer using procedures similar to those used in conventional electronics. Then they use specialized etching techniques to undercut the devices. The resulting ribbons of silicon are about 100 nanometers thick -- 1,000 times smaller than the diameter of a human hair.

In the next step, a flat rubber substrate is stretched and placed on top of the ribbons. Peeling the rubber away lifts the ribbons off the wafer and leaves them adhered to the rubber surface. Releasing the stress in the rubber causes the silicon ribbons and the rubber to buckle into a series of well-defined waves that resemble an accordion.

"The resulting system of wavy integrated device elements on rubber represents a new form of stretchable, high-performance electronics," said Young Huang, the Shao Lee Soo Professor of Mechanical and Industrial Engineering. "The amplitude and frequency of the waves change, in a physical mechanism similar to an accordion bellows, as the system is stretched or compressed."

As a proof of concept, the researchers fabricated wavy diodes and transistors and compared their performance with traditional devices. Not only did the wavy devices perform as well as the rigid devices, they could be repeatedly stretched and compressed without damage, and without significantly altering their electrical properties.

"These stretchable silicon diodes and transistors represent only two of the many classes of wavy electronic devices that can be formed," Rogers said. "In addition to individual devices, complete circuit sheets can also be structured into wavy geometries to enable stretchability."

Besides the unique mechanical characteristics of wavy devices, the coupling of strain to electronic and optical properties might provide opportunities to design device structures that exploit mechanically tunable, periodic variations in strain to achieve unusual responses.

In addition to Rogers and Huang, co-authors of the paper were postdoctoral researcher Dahl-Young Khang and research scientist Hanqing Jiang. The Defense Advanced Research Projects Agency and the U.S. Department of Energy funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>