Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretchable silicon could be next wave in electronics

19.12.2005


The next wave in electronics could be wavy electronics.



Researchers at the University of Illinois at Urbana-Champaign have developed a fully stretchable form of single-crystal silicon with micron-sized, wave-like geometries that can be used to build high-performance electronic devices on rubber substrates.

"Stretchable silicon offers different capabilities than can be achieved with standard silicon chips," said John Rogers, a professor of materials science and engineering and co-author of a paper to appear in the journal Science, as part of the Science Express Web site, on Dec 15.


Functional, stretchable and bendable electronics could be used in applications such as sensors and drive electronics for integration into artificial muscles or biological tissues, structural monitors wrapped around aircraft wings, and conformable skins for integrated robotic sensors, said Rogers, who is also a Founder Professor of Engineering, a researcher at the Beckman Institute for Advanced Science and Technology and a member of the Frederick Seitz Materials Research Laboratory.

To create their stretchable silicon, the researchers begin by fabricating devices in the geometry of ultrathin ribbons on a silicon wafer using procedures similar to those used in conventional electronics. Then they use specialized etching techniques to undercut the devices. The resulting ribbons of silicon are about 100 nanometers thick -- 1,000 times smaller than the diameter of a human hair.

In the next step, a flat rubber substrate is stretched and placed on top of the ribbons. Peeling the rubber away lifts the ribbons off the wafer and leaves them adhered to the rubber surface. Releasing the stress in the rubber causes the silicon ribbons and the rubber to buckle into a series of well-defined waves that resemble an accordion.

"The resulting system of wavy integrated device elements on rubber represents a new form of stretchable, high-performance electronics," said Young Huang, the Shao Lee Soo Professor of Mechanical and Industrial Engineering. "The amplitude and frequency of the waves change, in a physical mechanism similar to an accordion bellows, as the system is stretched or compressed."

As a proof of concept, the researchers fabricated wavy diodes and transistors and compared their performance with traditional devices. Not only did the wavy devices perform as well as the rigid devices, they could be repeatedly stretched and compressed without damage, and without significantly altering their electrical properties.

"These stretchable silicon diodes and transistors represent only two of the many classes of wavy electronic devices that can be formed," Rogers said. "In addition to individual devices, complete circuit sheets can also be structured into wavy geometries to enable stretchability."

Besides the unique mechanical characteristics of wavy devices, the coupling of strain to electronic and optical properties might provide opportunities to design device structures that exploit mechanically tunable, periodic variations in strain to achieve unusual responses.

In addition to Rogers and Huang, co-authors of the paper were postdoctoral researcher Dahl-Young Khang and research scientist Hanqing Jiang. The Defense Advanced Research Projects Agency and the U.S. Department of Energy funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>