Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic nose sniffs out false alarms

15.12.2005


An electronic nose is so sensitive that it can distinguish between cigarette smoke and smoke from an office or factory fire. Developed by a European research consortium the device will help to end the vast number of false alarms recorded by fire brigades each year.



The researchers developed a demonstrator of the new device and now hope to complete a viable commercial product by October 2006.

The Intelligent Modular, multi-Sensor (IMOS) and networked fire detection system was developed by a 9-member partnership from across Europe to tackle the critical problem of false alarms.


"Currently 90 per cent percent of regular fire alarms are false," says Florence Daniault, coordinator of the IST-funded IMOS project. "Fire brigades must investigate every alarm logged and it causes enormous inefficiencies."

The false alarm rate can rise to 99 per cent. "In cargo planes, for example, you may have humidity in the hold which condenses once the airplane takes off. That condensate registers as a particulate and sets off the alarm," says Daniault.

Furthermore people lose faith in the alarm system and may delay evacuation because they believe there is no fire, with potentially disastrous consequences.

"We started off with the idea of developing a system using several sensors that could eliminate most of the false alarms," says Daniault.

The team first investigated a variety of sensor types, including gas, optical and conducting polymer sensors. Optical sensors detect light scattering as an indication particulates, while gas sensors detect gases like CO, CO2 or NOx. But conducting polymer sensors can detect a wide variety of volatiles because of their novel properties.

Conducting polymers are an exciting emerging technology because the electrical resistance in the polymer varies in the presence of gas. Even more interesting, however, is that once the gas disappears the polymers resistance returns to its ’resting’ state.

The IMOS team identified the specific chemicals associated with the smoke emitted from various sources, including wood, cotton, paper, polyurethane (plastics) foam and cigarettes. "Isolating cigarette smoke is a breakthrough," she says. They developed dedicated polymer sensors to build an array able to identify these specific chemicals.

Their complete fire alarms system now combines a traditional optical detector, which uses light scattering to detect particulates in the air. Once particulates are detected the optical sensors then recruits the conducting polymer sensor to ’smell’ the type of smoke that’s producing the particulate. If it senses any of a number of characteristic smoke types, it sets off the alarm.

"We tested a demonstration device in an office building and at a recycling centre. We used an employee smoking room for the office demonstration, and the recycling centre had a lot of dust and activity. Both were ideal locations to generate false alarms, but the IMOS worked perfectly," says Daniault.

Later the team again tested the device in a fire lab where it reacted appropriately to given fire situations.

"There is still some work to be done. We’d like to improve the response time on the conducting polymer sensors, for example. But we’ve started to design a product and hope to complete that in time for the Security 2006 exhibition in Essen next October," she says.

The security industry will certainly be very interested in a sensor that has a nose for fire.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>