Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

4 power supply sources for the experimental EFDA-JET fusion reactor

15.12.2005


JEMA has been contracted directly by the European Commission (commissioned through the European Fusion Development Agreement, EFDA) to design, construct and install 4 sources of power supply, each capable of producing 20 million watts of energy, for the European experimental fusion reactor installations located at Culham in the United Kingdom. The project is expected to last three years.



The contract is a sound example of the confidence these European agencies have in the work of JEMA, especially as this is a re-order on a previous contract in 2003 when the company supplied 2 units of these energy supply sources for the same centre.

Fusion reactions are produced within the stars at extremely high temperatures, thus generating energy in the form of light and heat, mainly with hydrogen as the raw material. In this type of reactor these reactions inside a star are being imitated in order to obtain energy. In fact the EFDAJET reactor is the largest in the world currently in operation and, as such, the reference for the scientific community throughout the world working in this field. At the same time, it is the system from which the new ITER reactor is to be developed, and which is to built thanks to an international agreement which will be the greatest scientific-technical project undertaken by mankind.


To explain in a nutshell the importance and scope of the project, the JEMA supply sources feed energy to the microwave systems that heat up the deuterium (hydrogen isotope) stored inside the reactor, with the aim of reaching a temperature of some 150 million degrees, necessary for the initiation of a fusion reaction

These power supply sources consist of special-characteristics equipment that are manufactured in a customised manner and are at the cutting edge of what is today manufacturable and the latest available technology.

Each supply source produces 20 million watts of electrical power (about 10% of the energy produced at the power station in the Basque port of Pasajes) in pulse format and using 130,000 volts d.c. power supply at 130 amperes, with high quality and precision specifications: less than 1,000 volts of error; 150 microseconds rising ramp and 7 microseconds falling ramp. Over a period of 20 seconds the power supply source is capable of generating 256 pulses, which is equivalent to short-circuiting the energy source itself on its exit.

To achieve the specifications required it has been necessary to develop a wide range of innovative elements and configurations (260,000 volt insulating transformers, high-voltage static crowbars, DSP control, refrigeration systems for water, etc.), which have required joint work with various research centres.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>