Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Have these experts drilled the world’s smallest hole?

29.11.2005


Experts at Cardiff University have developed machinery so sophisticated that they can drill a hole narrower than a human hair.



Such precision has potentially major benefits in medical and electronic engineering.

The experts at the University’s multi-award-winning Manufacturing Engineering Centre, are drilling holes as small as 22 microns (0.022 mm) in stainless steel and other materials.


The human hair varies between 80 microns (0.08 mm) down to 50 microns (0.05 mm) in thickness.

"The holes we are now drilling in Cardiff with the electro-discharge machining (EDM) process could be the smallest in the world," said the Centre’s marketing director Frank Marsh.

"The standard rods available commercially are capable of making holes of 150 microns. Although lasers are able to make small holes, these are of poorer quality when compared to the EDM process. Lasers make holes that taper, whereas EDM makes parallel or vertical holes."

The process is achieved by creating a minute electrode, with a diameter of only 6 microns (0.006 mm), which was itself produced by manufacturing a highly precise wire electrode discharge grinder.

"It is thought that the Japanese conceived such a grinder in 1985 and subsequently a paper stated that they have made an electrode of 5 microns (0.005 mm) in diameter, however no further evidence has emerged," said Mr Marsh

The ability to produce such quality tiny holes in any conductive material represents a significant advance in mechanical engineering and will benefit designers in the medical and laboratory sciences, as well as electronic design engineers in creating smaller electronic systems which will cover a wide range of industrial and consumer industries.

In the new year, the Centre’s scientists will acquire new nano-technological equipment which will enable them to make even smaller holes and add surface materials of tiny thicknesses to finish optical, medical and other components.

Frank Marsh | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Power and Electrical Engineering:

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

nachricht Plug & Play Light Solution for NOx measurement
01.12.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>