Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Have these experts drilled the world’s smallest hole?

29.11.2005


Experts at Cardiff University have developed machinery so sophisticated that they can drill a hole narrower than a human hair.



Such precision has potentially major benefits in medical and electronic engineering.

The experts at the University’s multi-award-winning Manufacturing Engineering Centre, are drilling holes as small as 22 microns (0.022 mm) in stainless steel and other materials.


The human hair varies between 80 microns (0.08 mm) down to 50 microns (0.05 mm) in thickness.

"The holes we are now drilling in Cardiff with the electro-discharge machining (EDM) process could be the smallest in the world," said the Centre’s marketing director Frank Marsh.

"The standard rods available commercially are capable of making holes of 150 microns. Although lasers are able to make small holes, these are of poorer quality when compared to the EDM process. Lasers make holes that taper, whereas EDM makes parallel or vertical holes."

The process is achieved by creating a minute electrode, with a diameter of only 6 microns (0.006 mm), which was itself produced by manufacturing a highly precise wire electrode discharge grinder.

"It is thought that the Japanese conceived such a grinder in 1985 and subsequently a paper stated that they have made an electrode of 5 microns (0.005 mm) in diameter, however no further evidence has emerged," said Mr Marsh

The ability to produce such quality tiny holes in any conductive material represents a significant advance in mechanical engineering and will benefit designers in the medical and laboratory sciences, as well as electronic design engineers in creating smaller electronic systems which will cover a wide range of industrial and consumer industries.

In the new year, the Centre’s scientists will acquire new nano-technological equipment which will enable them to make even smaller holes and add surface materials of tiny thicknesses to finish optical, medical and other components.

Frank Marsh | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>