Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from Nature - First Self-Organizing Electronic Systems Developed

25.11.2005


Professor Peter Hofmann and his team at the Competence Center Electrical and Electronic (EE) Architecture at the Technische Universität Dresden (TU Dresden) have successfully developed the first self-organizing electronic components. These so called autonomous units form the basis for complex technical systems of the future. For this purpose, the scientists have adopted the knowledge of complex systems found in nature.



Organisms are structured according to the modular assembly concept – cells form tissue, tissue forms organs and these in turn form the organism. If individual cells die off, then the organism continues to function. This is because although the cells interact with their neighbouring cells, each individual cell is autonomous in its function. If necessary, it is even possible for other cells to step into the breach and take on a replacement function.

Engineers have been astonished about how effortlessly natural systems seem to adapt to new situations. As an example, a population of ants always finds the shortest way between food site and anthill without possessing a central instructional order. The mechanisms which take place in the human organism are equally fascinating, regarding for example injured skin cells or even entire organs which can regenerate themselves following an accident.


These particular characteristics of natural systems all have one thing in common: They take place by themselves. There is no central control function which issues the cells with a command. In fact, this is the starting point for the researchers at the Competence Center of the TU Dresden. They intend to develop technical systems with self-organizing characteristics and to apply these in practice. One area of application, in which researchers have a particular interest, is the automobile industry.

When nature serves as a model for things technical, this is called “Organic Computing“.
Firstly, the Competence Center EE Architecture of the TU Dresden has analyzed the basic physical and biological principles of self-organization and abstracted them for their application in technical systems. Following this, both the structure and tasks of the units capable of self-organization were described.

In this process, each single element is given autonomy so they are able to communicate with the other system units and – on the basis of this communication process - to co-operate in a way that the objective function is achieved.

This means that the communication process between one particular element and its corresponding control unit is not fixed from the start. On the contrary, the controlling unit is able to react upon stimuli sent by diverse elements. If an electronic control unit (ECU) breaks down, then another control function can integrate a new element and take on its function. To illustrate this, if the control switch for an electric window in an automobile should malfunction, then it is possible for the driver to initiate an autonomous reconfiguration of the system. As a result, approved by the driver, the window control unit receives its information from another switch. In this way it is possible to close the window using that different switch.

Recreating a modern automobile, the Competence Center has developed a test vehicle known as “August 1“ with which the functioning of decentralized electronic systems is currently tested. Professor Peter Hofmann and his research team want to find out how single electronic control units can be organized autonomously, i.e. independently of other systems. The advantage of this would be for instance that each wheel can be controlled and driven individually. As a result, the scientists hope that automotive electronics can be made even more reliable by decentralizing its functioning. Furthermore, decentrally organized systems are very robust and able to adapt to changes caused by the environment. In the field of technology this principle has until now only been applied with computers in a simplified way. USB ports are used to attach various external devices, which the computer recognizes, accepts and integrates.

The Competence Center EE Architecture was founded in 2002 and belongs to the Faculty of Transport Engineering “Friedrich List“ of the TU Dresden.

Prof. Peter E. H. Hofmann | alfa

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>