Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from Nature - First Self-Organizing Electronic Systems Developed

25.11.2005


Professor Peter Hofmann and his team at the Competence Center Electrical and Electronic (EE) Architecture at the Technische Universität Dresden (TU Dresden) have successfully developed the first self-organizing electronic components. These so called autonomous units form the basis for complex technical systems of the future. For this purpose, the scientists have adopted the knowledge of complex systems found in nature.



Organisms are structured according to the modular assembly concept – cells form tissue, tissue forms organs and these in turn form the organism. If individual cells die off, then the organism continues to function. This is because although the cells interact with their neighbouring cells, each individual cell is autonomous in its function. If necessary, it is even possible for other cells to step into the breach and take on a replacement function.

Engineers have been astonished about how effortlessly natural systems seem to adapt to new situations. As an example, a population of ants always finds the shortest way between food site and anthill without possessing a central instructional order. The mechanisms which take place in the human organism are equally fascinating, regarding for example injured skin cells or even entire organs which can regenerate themselves following an accident.


These particular characteristics of natural systems all have one thing in common: They take place by themselves. There is no central control function which issues the cells with a command. In fact, this is the starting point for the researchers at the Competence Center of the TU Dresden. They intend to develop technical systems with self-organizing characteristics and to apply these in practice. One area of application, in which researchers have a particular interest, is the automobile industry.

When nature serves as a model for things technical, this is called “Organic Computing“.
Firstly, the Competence Center EE Architecture of the TU Dresden has analyzed the basic physical and biological principles of self-organization and abstracted them for their application in technical systems. Following this, both the structure and tasks of the units capable of self-organization were described.

In this process, each single element is given autonomy so they are able to communicate with the other system units and – on the basis of this communication process - to co-operate in a way that the objective function is achieved.

This means that the communication process between one particular element and its corresponding control unit is not fixed from the start. On the contrary, the controlling unit is able to react upon stimuli sent by diverse elements. If an electronic control unit (ECU) breaks down, then another control function can integrate a new element and take on its function. To illustrate this, if the control switch for an electric window in an automobile should malfunction, then it is possible for the driver to initiate an autonomous reconfiguration of the system. As a result, approved by the driver, the window control unit receives its information from another switch. In this way it is possible to close the window using that different switch.

Recreating a modern automobile, the Competence Center has developed a test vehicle known as “August 1“ with which the functioning of decentralized electronic systems is currently tested. Professor Peter Hofmann and his research team want to find out how single electronic control units can be organized autonomously, i.e. independently of other systems. The advantage of this would be for instance that each wheel can be controlled and driven individually. As a result, the scientists hope that automotive electronics can be made even more reliable by decentralizing its functioning. Furthermore, decentrally organized systems are very robust and able to adapt to changes caused by the environment. In the field of technology this principle has until now only been applied with computers in a simplified way. USB ports are used to attach various external devices, which the computer recognizes, accepts and integrates.

The Competence Center EE Architecture was founded in 2002 and belongs to the Faculty of Transport Engineering “Friedrich List“ of the TU Dresden.

Prof. Peter E. H. Hofmann | alfa

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>