Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from Nature - First Self-Organizing Electronic Systems Developed

25.11.2005


Professor Peter Hofmann and his team at the Competence Center Electrical and Electronic (EE) Architecture at the Technische Universität Dresden (TU Dresden) have successfully developed the first self-organizing electronic components. These so called autonomous units form the basis for complex technical systems of the future. For this purpose, the scientists have adopted the knowledge of complex systems found in nature.



Organisms are structured according to the modular assembly concept – cells form tissue, tissue forms organs and these in turn form the organism. If individual cells die off, then the organism continues to function. This is because although the cells interact with their neighbouring cells, each individual cell is autonomous in its function. If necessary, it is even possible for other cells to step into the breach and take on a replacement function.

Engineers have been astonished about how effortlessly natural systems seem to adapt to new situations. As an example, a population of ants always finds the shortest way between food site and anthill without possessing a central instructional order. The mechanisms which take place in the human organism are equally fascinating, regarding for example injured skin cells or even entire organs which can regenerate themselves following an accident.


These particular characteristics of natural systems all have one thing in common: They take place by themselves. There is no central control function which issues the cells with a command. In fact, this is the starting point for the researchers at the Competence Center of the TU Dresden. They intend to develop technical systems with self-organizing characteristics and to apply these in practice. One area of application, in which researchers have a particular interest, is the automobile industry.

When nature serves as a model for things technical, this is called “Organic Computing“.
Firstly, the Competence Center EE Architecture of the TU Dresden has analyzed the basic physical and biological principles of self-organization and abstracted them for their application in technical systems. Following this, both the structure and tasks of the units capable of self-organization were described.

In this process, each single element is given autonomy so they are able to communicate with the other system units and – on the basis of this communication process - to co-operate in a way that the objective function is achieved.

This means that the communication process between one particular element and its corresponding control unit is not fixed from the start. On the contrary, the controlling unit is able to react upon stimuli sent by diverse elements. If an electronic control unit (ECU) breaks down, then another control function can integrate a new element and take on its function. To illustrate this, if the control switch for an electric window in an automobile should malfunction, then it is possible for the driver to initiate an autonomous reconfiguration of the system. As a result, approved by the driver, the window control unit receives its information from another switch. In this way it is possible to close the window using that different switch.

Recreating a modern automobile, the Competence Center has developed a test vehicle known as “August 1“ with which the functioning of decentralized electronic systems is currently tested. Professor Peter Hofmann and his research team want to find out how single electronic control units can be organized autonomously, i.e. independently of other systems. The advantage of this would be for instance that each wheel can be controlled and driven individually. As a result, the scientists hope that automotive electronics can be made even more reliable by decentralizing its functioning. Furthermore, decentrally organized systems are very robust and able to adapt to changes caused by the environment. In the field of technology this principle has until now only been applied with computers in a simplified way. USB ports are used to attach various external devices, which the computer recognizes, accepts and integrates.

The Competence Center EE Architecture was founded in 2002 and belongs to the Faculty of Transport Engineering “Friedrich List“ of the TU Dresden.

Prof. Peter E. H. Hofmann | alfa

More articles from Power and Electrical Engineering:

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>