Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensors Made in Dresden for Aerospace and Medicine

21.11.2005


Currently, the Institute of Aerospace Engineering at the Technische Universität Dresden (TU Dresden) is developing an innovative sensor system for human respiratory investigations which can also be applied in the space. Professor Stefanos Fasoulas and his expert team have created a high-performance miniaturised sensor which enables a simultaneous in-situ measurement of oxygen, carbon dioxide and volume flow rates.

In this regard, scientists of the Professorship for Space Systems and Utilisation and their project partners from industry and from the European Space Agency (ESA) are opening up completely new horizons in the development of sensor systems for human respiratory investigations.

By integrating diverse measurements in a single sensor, the size of the analysing unit can be reduced to a few square millimetres only. Momentarily, scientists are working on the completion of an instrument which is supposed to be used on the International Space Station (ISS) soon. Small, light-weight, portable, powerful and reliable – these characteristics make the new system the ideal device for detecting an astronaut’s fitness or conducting important experiments in the space. The European Space Agency (ESA) is supporting this development.



Of course, the project team is thinking of rather “terrestrial“ applications, too, for instance in medical engineering. In the future, patients could take the walkman-sized instrument home if necessary in order to check their respiratory function regularly or to optimise the inhalation of pharmaceuticals. Nowadays, the application in sports medicine is already being tested successfully. Yet the innovative sensor technology made in Saxony can also be applied in areas such as environmental engineering, vacuum technology as well as in measurement and control technology in various ways. For this purpose, particular production methods are already used at the stage of development, allowing for cost-effective mass production later on.

Prof Stefanos Fasoulas | alfa
Further information:
http://www.tu-dresden.de

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>