Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensors Made in Dresden for Aerospace and Medicine

21.11.2005


Currently, the Institute of Aerospace Engineering at the Technische Universität Dresden (TU Dresden) is developing an innovative sensor system for human respiratory investigations which can also be applied in the space. Professor Stefanos Fasoulas and his expert team have created a high-performance miniaturised sensor which enables a simultaneous in-situ measurement of oxygen, carbon dioxide and volume flow rates.

In this regard, scientists of the Professorship for Space Systems and Utilisation and their project partners from industry and from the European Space Agency (ESA) are opening up completely new horizons in the development of sensor systems for human respiratory investigations.

By integrating diverse measurements in a single sensor, the size of the analysing unit can be reduced to a few square millimetres only. Momentarily, scientists are working on the completion of an instrument which is supposed to be used on the International Space Station (ISS) soon. Small, light-weight, portable, powerful and reliable – these characteristics make the new system the ideal device for detecting an astronaut’s fitness or conducting important experiments in the space. The European Space Agency (ESA) is supporting this development.



Of course, the project team is thinking of rather “terrestrial“ applications, too, for instance in medical engineering. In the future, patients could take the walkman-sized instrument home if necessary in order to check their respiratory function regularly or to optimise the inhalation of pharmaceuticals. Nowadays, the application in sports medicine is already being tested successfully. Yet the innovative sensor technology made in Saxony can also be applied in areas such as environmental engineering, vacuum technology as well as in measurement and control technology in various ways. For this purpose, particular production methods are already used at the stage of development, allowing for cost-effective mass production later on.

Prof Stefanos Fasoulas | alfa
Further information:
http://www.tu-dresden.de

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>