Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imperial College London-BP project to explore energy savings in cities

02.11.2005


Imperial College London and BP today announce a £4.5 million project to research the use of energy in cities.



The BP Urban Energy Systems project at Imperial will explore how money and energy could be saved in the future if cities integrated the systems that supply them with resources.

The project was announced today at the launch of Imperial’s Energy Futures Lab, which aims to play a major role in setting the energy agenda over the next 20 years.


The Urban Energy Systems project is the first to try to document and understand in detail how energy, people and materials flow through a city. The researchers aim to use this information to improve the efficiency of both existing and new-built cities.

The project will analyse how much benefit would result if a whole city optimised its use of resources such as power, heating, transport and water, for example by heating homes with the heat from waste water or by arranging residential and business areas to reduce commuting traffic.

It will also investigate the energy lessons to be drawn from the differences between cities such as London, New York, and Beijing.

Explaining that 80% of the world’s population is projected to be living in cities by 2030, Professor David Fisk, Royal Academy of Engineering Professor of Sustainable Development and co-director of the project, said: "Reducing the amount of urban energy wasted is critically important if we want to tackle diminishing natural resources and climate change.

"We’re going to try to find out what savings could be achieved if whole cities organised themselves to integrate their energy use. The savings from optimisation could be huge - we know that when integrated systems are used by industry, businesses can save as much as 50% of their resources," he added.

Professor Julia King, Principal of the Faculty of Engineering, added: "It is a major undertaking to bring together all the diverse data we will need to explore the impact that established and developing cities have on global energy consumption. We are very excited to be collaborating with BP on such an important piece of research.

"We look forward to being able to model the effects of potential changes to the way our cities use energy on the world’s energy consumption, as part of defining a more sustainable future," she added.

Imperial will shortly be recruiting researchers for the project. It will involve around ten academics, six post-doctoral researchers and seven PhD students from engineering, life sciences and business working together.

Dr Steve Koonin, BP’s chief scientist, said: "BP has a long history of productive collaboration with Imperial. We are very excited about this new, pioneering effort to truly understand, model, and optimise the workings of cities. Results from this research will help the world make better use of the energy we provide."

The research will draw heavily on Imperial’s expertise in modelling complex systems. The researchers will include multiple parameters in their models including superstructures of technology; business and policy alternatives; capabilities of existing and novel technology; existing and novel supply strategies and novel management systems. They will also explore the business models that would enable a city to achieve optimisation.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>