Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Design of controllers


In her PhD thesis at the Public University of Navarre, Industrial Engineer Marta Barreras Carracedo put forward a new method of designing controllers based on QFT (Quantitative Feedback Theory) and which facilitates its real implantation in the government of real physical processes. The thesis itself validates the method putting into practice two concrete cases, an industrial electric furnace used for the drying of large pieces of composite and a heat exchanger in a solar water-heating plant.

The PhD is entitled: “Multivariable QFT Robust Control by means of non-diagonal sequential methods. Its application to the government of thermal processes".

Development of sophisticated industrial processes

Over the last decades, the rapid advance of technology and the appearance of increasingly more powerful computers have favoured the development of industrial processes that are more and more sophisticated. These processes include, in general, an ever higher level of automation the aim of which is the enhancement of characteristics and performance. Nevertheless, this brings with it a growing complexity in installations that have accelerated demand for new, advanced control strategies capable of covering new needs.

In this respect, Control Engineering plays a fundamental role within modern industrial processes. Marta Barreras’s PhD was aimed at developing a new advanced strategy for the design of controllers of multiple sensor systems and actuators, of a robust nature and with a capacity for internal decoupling and rejection of external perturbations. Moreover, the system has to be sufficiently simple in order to facilitate its implantation into real industrial processes.

To this end, the research work used the Quantitative Feedback Theory, given its capacity to deal with the uncertainty of the system and the existing external perturbations. This theory is based on the use of non-diagonal elements of the controller to deal simultaneously with problems such as coupling reduction and rejection of external perturbations.

Validation with two real processes

After a theoretical analysis, the results were validated in two distinct stages. First through the resolution of a theoretical example and, secondly, by means of its application in two real processes.

Marta Barreras chose an industrial electric furnace used for the baking of large pieces of composite and a heat exchanger located in a solar water-heating plant.

On the one hand, the high multiplicity of actuators and sensors present in the industrial electric furnace means that its operation is of a high multivariable character. Thus, on governing automatically its thermal and dynamic behaviour, there arise significant problems of coupling between existing control loops.

On the other hand, the interaction existing between two loops of a heat exchanger, as with the existence of uncertainty in the model and presence of external perturbations, make this application another good example for valilidating the multivariable QFT strategy.

Marta Barreras points out that, amongst the advantages of the technique applied in these two cases is the act that it manages to enhance the general response of the system to be controlled. Specifically, the rejection of external perturbations was augmented and we managed to reduce the effect of coupling between the loops of the system.

Garazi Andonegi | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>