Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design of controllers

28.10.2005


In her PhD thesis at the Public University of Navarre, Industrial Engineer Marta Barreras Carracedo put forward a new method of designing controllers based on QFT (Quantitative Feedback Theory) and which facilitates its real implantation in the government of real physical processes. The thesis itself validates the method putting into practice two concrete cases, an industrial electric furnace used for the drying of large pieces of composite and a heat exchanger in a solar water-heating plant.

The PhD is entitled: “Multivariable QFT Robust Control by means of non-diagonal sequential methods. Its application to the government of thermal processes".

Development of sophisticated industrial processes



Over the last decades, the rapid advance of technology and the appearance of increasingly more powerful computers have favoured the development of industrial processes that are more and more sophisticated. These processes include, in general, an ever higher level of automation the aim of which is the enhancement of characteristics and performance. Nevertheless, this brings with it a growing complexity in installations that have accelerated demand for new, advanced control strategies capable of covering new needs.

In this respect, Control Engineering plays a fundamental role within modern industrial processes. Marta Barreras’s PhD was aimed at developing a new advanced strategy for the design of controllers of multiple sensor systems and actuators, of a robust nature and with a capacity for internal decoupling and rejection of external perturbations. Moreover, the system has to be sufficiently simple in order to facilitate its implantation into real industrial processes.

To this end, the research work used the Quantitative Feedback Theory, given its capacity to deal with the uncertainty of the system and the existing external perturbations. This theory is based on the use of non-diagonal elements of the controller to deal simultaneously with problems such as coupling reduction and rejection of external perturbations.

Validation with two real processes

After a theoretical analysis, the results were validated in two distinct stages. First through the resolution of a theoretical example and, secondly, by means of its application in two real processes.

Marta Barreras chose an industrial electric furnace used for the baking of large pieces of composite and a heat exchanger located in a solar water-heating plant.

On the one hand, the high multiplicity of actuators and sensors present in the industrial electric furnace means that its operation is of a high multivariable character. Thus, on governing automatically its thermal and dynamic behaviour, there arise significant problems of coupling between existing control loops.

On the other hand, the interaction existing between two loops of a heat exchanger, as with the existence of uncertainty in the model and presence of external perturbations, make this application another good example for valilidating the multivariable QFT strategy.

Marta Barreras points out that, amongst the advantages of the technique applied in these two cases is the act that it manages to enhance the general response of the system to be controlled. Specifically, the rejection of external perturbations was augmented and we managed to reduce the effect of coupling between the loops of the system.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>