Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford innovation helps ’enlighten’ silicon chips

27.10.2005


Light can carry data at much higher rates than electricity, but it has always been too expensive and difficult to use light to transmit data among silicon chips in electronic devices. Now, electrical engineers at Stanford have solved a major part of the problem. They have invented a key component that can easily be built into chips to break up a laser beam into billions of bits of data (zeroes and ones) per second. This could help chips output data at a much higher rate than they can now.

’’Most of the high-performance optoelectronics-the stuff that connects optics and electronics-are made from moderately exotic materials, and putting them together with silicon has been hard,’’ says David A. B. Miller, the W. M. Keck Foundation Professor of Electrical Engineering. ’’In the end you’d like to have one platform to make everything, and it would be good if that platform were based on silicon.’’

That single platform is now much closer to reality. The discovery Miller and researchers including James Harris, the James and Ellenor Chesebrough Professor in the School of Engineering, announce in the Oct. 27 issue of the journal Nature is one that may enable a tiny modulator-a solid-state shutter-made of silicon and germanium. Because silicon and germanium are elements common in semiconductor manufacturing, the modulator could be built into chips easily and cheaply.



Such a modulator could turn a beam into a stream of digital data by selectively absorbing the beam (a zero) or allowing it to continue on (a one). This would pave the way for at least some of the longer connections between chips to use light. Electrical connections have worked perfectly well up to now, but projected data rates have pushed engineers to find alternative approaches such as giving light a greater role.

Miller and Harris estimate that the modulator, which could be about a millionth of a meter tall and about as long, could be made to operate at rates greater than 100 billion times a second, which is 50 times faster than the rate employed in computing hardware today and as fast as the highest rates being considered for optical communications.

Bucking conventional wisdom

To make the modulator, Harris and Miller’s research group had to buck the conventional wisdom that physics wouldn’t allow it, says student researcher Yu-Hsuan Kuo.

Understanding how electrons in atoms absorb-or don’t absorb-incoming light is key to understanding why people thought a germanium-based modulator was impossible, and how Miller and Harris succeeded to a degree that surprised even them.

Electrons can exist only in specific orbits around an atom’s center. Each orbit is associated with an energy level. When light with the right amount of energy-or wavelength-hits an electron with the right amount of energy, the electron absorbs the light, using its energy to jump to the next allowed orbit. Applying a strong electric field to the atom can change the wavelength of light that the electron will absorb. This process has been known for more than a century as the Stark effect.

The Stark effect allows materials to act as shutters for particular wavelengths of light, absorbing one or another as engineers turn an electric field on or off. With atoms themselves, the fields required to produce the Stark effect are so large that they would require a voltage too high to use in chips. But in very thin layers of some materials, a strong and sensitive version of this process, known as the quantum-confined Stark effect, occurs at acceptable voltages. Much of today’s high-end telecommunications equipment uses thin materials featuring this effect to transmit data along fiberoptic cables.

Silicon surprise

The trick was making this Stark effect work in materials compatible with chip manufacturing. Silicon and germanium both belong to a group of materials where the electrons do not appear favorably arranged for the Stark effect. What Miller, Harris and their group discovered is that this commonly accepted unfavorable appearance in germanium was deceiving. In fact, energy levels in germanium that are essentially immune to this Stark effect were obscuring more promising energy levels. The researchers set about to build and test a silicon-germanium device to see if they could indeed exploit this Stark effect in germanium.

What they found is that when germanium layers are properly situated in a crystal with silicon, their electrons do not ’’leak’’ from useful levels into useless ones. The Stark effect could indeed work in germanium.

What Harris and Miller didn’t anticipate was how well it would work. ’’The surprising thing is that this effect actually works as well as in any current modulator-better than many,’’ Harris says. In other words, using these modulators, which are compatible with computer chips, does not impair performance.

Harris and Miller’s research team included several students as well as consulting electrical engineering Professor Theodore I. Kamins. The students are Kuo, Yongkyu Lee, Yangsi Ge, Shen Ren and Jonathan E. Roth. The research was supported by Intel and the Defense Advanced Research Projects Agency.

A key next step for the team is to show that they can make modulators for standard telecommunications wavelengths. They are confident that they can, and that their discovery can help usher in an ’’enlightened’’ age of computing and communications.

David Orenstein | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>