Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A warmer world might not be a wetter one

18.10.2005


A NASA study is offering new insight into how the Earth’s water cycle might be influenced by global change.


Regions like the Persian Gulf in the Middle East, shown here by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, may face increasingly severe water shortages as global climate changes. CREDIT: NASA GSFC


This map of sea surface temperatures was produced using MODIS data on the Terra satellite. The red pixels show warmer surface temperatures, while yellow and green are middle values, and blue represents cold water. CREDIT: NASA GSFC



In recent years, scientists have warned that the water cycle may be affected by temperature changes, as warmer temperatures can increase the moisture-holding capacity of air.

The global water cycle involves the transfer of water molecules between the Earth’s land masses, cryosphere, oceans and atmosphere. It’s a gigantic system powered by the sun, fueling a continuous exchange of moisture between the oceans, atmosphere and land.


Most climate models have shown that that a warmer climate will increase global evaporation and precipitation, but the atmospheric storage of water vapor has not yet been well studied.

Recently, researchers from NASA Goddard Space Flight Center, Greenbelt, Md., produced climate simulations of the early and late 20th century. They used sea surface temperature (SST) data and two computer models designed at Goddard Space Flight Center to determine how long water stays in the atmosphere. This is one way of measuring how the global water cycle might be influenced by changes in many variables, including temperature and precipitation.

Despite model differences, both simulations showed an increase in global evaporation and precipitation during this period. But, it is important to recognize that simulated atmospheric temperatures also increased during this period, raising the atmosphere’s "total precipitable water" - the amount of liquid water in the atmosphere if all water vapor were suddenly condensed.

"By computing a diagnostic for the water cycle rate, which accounts for total atmospheric water vapor and the average rate of precipitation, the models show the water cycling rate is reduced as the temperature warms," said Michael Bosilovich, lead author of the study, published in the May 2005 issue of the American Meteorological Society’s Journal of Climate.

When the researchers studied precipitation simulated over land and sea, they found it decreased over land as the local recycling of water vapor was reduced. Oceanic precipitation, however, had an upward trend along with increased sea surface temperatures, consistent with historical data and earlier studies.

"But, it should be noted that these contrasting land and ocean trends are not universally applicable to all regions," said Bosilovich. "For instance, the precipitation over the North American continent increases, while it decreases over the Gulf of Mexico."

The study also found that land sources of water for precipitation vary considerably within individual regions. Over time, the continental cycle of water appeared to decline, except in the central United States, where it might increase. But, further study is needed with a regional focus to accurately determine local recycling rates.

"In regard to the global scale, satellite data is an essential tool in assessing the rate and intensity of the global water cycle. It helps to identify the background state of the climate, but is limited by its short duration of record and deficiencies within historical products," said Bosilovich. "This study highlights the importance of continued high quality, well-maintained observations of atmospheric water content and precipitation rates over both the land and ocean well into the future so that we can more accurately assess changes in the water cycle."

Today, NASA’s Aqua and Terra satellites are providing such data by giving new, detailed information on processes that contribute to the water cycle. Ultimately these findings, coupled with data from future satellites, will be incorporated into regional and global computer models, improving both short-term weather forecasts and long-term climate forecasts. Such seasonal predictions carry significant economic implications and are also critical to water resource managers in determining water availability and management.

Other research programs like the NASA Energy and Water Cycle Study also use data from NASA satellites to help scientists learn more about the link between climate and the water cycle, improving their ability to predict events like floods and droughts.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>