Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A warmer world might not be a wetter one

18.10.2005


A NASA study is offering new insight into how the Earth’s water cycle might be influenced by global change.


Regions like the Persian Gulf in the Middle East, shown here by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, may face increasingly severe water shortages as global climate changes. CREDIT: NASA GSFC


This map of sea surface temperatures was produced using MODIS data on the Terra satellite. The red pixels show warmer surface temperatures, while yellow and green are middle values, and blue represents cold water. CREDIT: NASA GSFC



In recent years, scientists have warned that the water cycle may be affected by temperature changes, as warmer temperatures can increase the moisture-holding capacity of air.

The global water cycle involves the transfer of water molecules between the Earth’s land masses, cryosphere, oceans and atmosphere. It’s a gigantic system powered by the sun, fueling a continuous exchange of moisture between the oceans, atmosphere and land.


Most climate models have shown that that a warmer climate will increase global evaporation and precipitation, but the atmospheric storage of water vapor has not yet been well studied.

Recently, researchers from NASA Goddard Space Flight Center, Greenbelt, Md., produced climate simulations of the early and late 20th century. They used sea surface temperature (SST) data and two computer models designed at Goddard Space Flight Center to determine how long water stays in the atmosphere. This is one way of measuring how the global water cycle might be influenced by changes in many variables, including temperature and precipitation.

Despite model differences, both simulations showed an increase in global evaporation and precipitation during this period. But, it is important to recognize that simulated atmospheric temperatures also increased during this period, raising the atmosphere’s "total precipitable water" - the amount of liquid water in the atmosphere if all water vapor were suddenly condensed.

"By computing a diagnostic for the water cycle rate, which accounts for total atmospheric water vapor and the average rate of precipitation, the models show the water cycling rate is reduced as the temperature warms," said Michael Bosilovich, lead author of the study, published in the May 2005 issue of the American Meteorological Society’s Journal of Climate.

When the researchers studied precipitation simulated over land and sea, they found it decreased over land as the local recycling of water vapor was reduced. Oceanic precipitation, however, had an upward trend along with increased sea surface temperatures, consistent with historical data and earlier studies.

"But, it should be noted that these contrasting land and ocean trends are not universally applicable to all regions," said Bosilovich. "For instance, the precipitation over the North American continent increases, while it decreases over the Gulf of Mexico."

The study also found that land sources of water for precipitation vary considerably within individual regions. Over time, the continental cycle of water appeared to decline, except in the central United States, where it might increase. But, further study is needed with a regional focus to accurately determine local recycling rates.

"In regard to the global scale, satellite data is an essential tool in assessing the rate and intensity of the global water cycle. It helps to identify the background state of the climate, but is limited by its short duration of record and deficiencies within historical products," said Bosilovich. "This study highlights the importance of continued high quality, well-maintained observations of atmospheric water content and precipitation rates over both the land and ocean well into the future so that we can more accurately assess changes in the water cycle."

Today, NASA’s Aqua and Terra satellites are providing such data by giving new, detailed information on processes that contribute to the water cycle. Ultimately these findings, coupled with data from future satellites, will be incorporated into regional and global computer models, improving both short-term weather forecasts and long-term climate forecasts. Such seasonal predictions carry significant economic implications and are also critical to water resource managers in determining water availability and management.

Other research programs like the NASA Energy and Water Cycle Study also use data from NASA satellites to help scientists learn more about the link between climate and the water cycle, improving their ability to predict events like floods and droughts.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>